The Higgs Mass and Fine-Tuning in Mirage Mediation

Martin W. Winkler with M. Badziak, S. Krippendorf, H.P. Nilles, M. Ratz Phys. Lett. B 712 (2012)

Bethe Center Workshop on Unification and String Theory Bad Honnef, October 5, 2012

2 Soft Mass Patterns in MiniLandscape Models

The Little Hierarchy Problem

electroweak symmetry breaking

$$M_Z^2 = -2\left(m_{H_u}^2 + \mu^2
ight) + \mathcal{O}\left(rac{1}{ an^2eta}
ight)$$

• naive expectation $|m_{H_u}| \sim M_Z$

• m_{H_u} affected by soft masses through RGE running

"Natural SUSY"

• m_{H_u} weakly sensitive to 1. and 2. generation: $m_{H_u}^2(M_Z) \simeq -1.6 m_{\tilde{g}}^2(M_{GUT}) + 0.7 m_H^2(M_{GUT}) - 0.6 m_{\tilde{t}}^2(M_{GUT})$

The Higgs Boson

Bethe Center Workshop 2012

Stop Running in Inverted Hierarchy Models

Radiative Stop Mixing

stop mixing increases m_h

$$\Delta m_{h,\text{loop}}^2 \propto y_t^2 m_t^2 \left[\frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12 m_{\tilde{t}}^2} \right) \right]$$
 (maximal: $\frac{|X_t|}{m_{\tilde{t}}} = \sqrt{6}$)

Martin W. Winkler (DESY)

7

Fine-Tuning

• fine-tuning: sensitivity of M_Z to parameter *a*

$$\Delta_a = \left| \frac{a}{M_Z^2} \frac{\partial M_Z^2}{\partial a} \right| \qquad \Delta = \max\{\Delta_a\}$$

• IH model:

 $M_Z^2 \simeq 3.2 m_{1/2}^2 - 0.1 m_3^2 - 0.01 m_0^2 - 0.85 A_0 m_{1/2} + 0.25 A_0^2 - 2 \mu^2$

- problem: sizable fine-tuning with respect to $m_{1/2}$
- but: cancellations between $m_{1/2}$ and m_0 for

$$m_0 \simeq 15 \dots 20 \ m_{1/2}$$

Comparison with the CMSSM

• for fixed ratio $m_0 = 15 m_{1/2}$ in the IH model

string theory realization?

Martin W. Winkler (DESY)

Bethe Center Workshop 2012

• Heterotic MiniLandscape

- assume: moduli except s fixed supersymmetrically
- dilaton stabilized by gaugino condensate + uplifting sector

• Heterotic MiniLandscape

- assume: moduli except s fixed supersymmetrically
- dilaton stabilized by gaugino condensate + uplifting sector

$$W = A e^{-bs}$$
gaugino condensate

• Heterotic MiniLandscape

- assume: moduli except s fixed supersymmetrically
- dilaton stabilized by gaugino condensate + uplifting sector

$$W = A e^{-bs}$$
gaugino condensate
$$+ const$$
e.g. from approx R-symmetries
Kappl et al., Phys. Rev. Lett. **102** (2009)

• Heterotic MiniLandscape

- assume: moduli except s fixed supersymmetrically
- dilaton stabilized by gaugino condensate + uplifting sector

The Hidden Gauge Group

- vanishing vacuum energy
- vanishing vacuum energy
 gauge coupling $g^2 = 1/\langle s \rangle \simeq 1/2$ $\left. \right\}$ fixes const, W_{up}
- gravitino mass: $m_{3/2} \sim b A e^{-b\langle s \rangle} \sim 1 \dots 100 \text{ TeV}$ $\Rightarrow b \simeq 15...20$ (for A = O(1))
- condensing gauge group SU(N):

$$b = \frac{8 \pi^2}{N} \Rightarrow N = 4,5$$
 required

The Hidden Gauge Group

- vanishing vacuum energy
- vanisning vacuum energy
 gauge coupling $g^2 = 1/\langle s \rangle \simeq 1/2$ $\left. \right\}$ fixes const, W_{up}
- gravitino mass: $m_{3/2} \sim b A e^{-b\langle s \rangle} \sim 1 \dots 100 \text{ TeV}$ $\Rightarrow b \simeq 15...20$ (for A = O(1))
- condensing gauge group SU(N):

$$b = \frac{8 \pi^2}{N} \Rightarrow N = 4,5$$
 required

>70% of MiniLandscape models vield N=4,5

Mirage Mediation

• SUSY breaking pattern fixed by dilaton stabilization

$$F_{
m S}\simeq rac{\sqrt{3}F_{
m X}}{b}\simeq rac{3\,m_{
m 3/2}}{b}$$

- matter F-Term F_X dominates, F_S suppressed by $\mathcal{O}(10)$
- mirage pattern of gaugino masses

A-parameters

$$A_{ijk} = \frac{m_{3/2}}{16\pi^2} [-\varrho + (\gamma_i + \gamma_j + \gamma_k)]$$

Gaugino Mass Pattern

• $\rho = 6$ for hidden SU(4), $\rho = 7.5$ for SU(5)

Sfermions

• untwisted sector:
$$Q_{3L}$$
, t_R , H_u , H_d , (τ_R)

suppressed soft mass

• twisted sector: 1. + 2. generation, b_R , τ_L , (τ_R)

unsuppressed soft mass

\Rightarrow UV realization of "Natural SUSY"

Krippendorf et al., Phys. Lett. B712 (2012)

• benchmark model:

 $m_i^2 = \left\{ egin{array}{ll} m_3^2 + ({
m anomaly}) & ({
m untwisted sector}) \ m_0^2 + ({
m anomaly}) & ({
m twisted sector}) \ m_0 \sim m_{3/2}, & m_3 \ll m_{3/2} \end{array}
ight.$

• reduced fine-tuning: cancellations M_3 , m_0 contribution to M_Z

Parameter Scan

Predictions

gauginos:

- compressed spectrum with fixed pattern
- $m_{\tilde{g}} \gtrsim$ 2 TeV (from Higgs mass)

scalars:

- inverted hierarchy
- \tilde{t}_1 lightest sfermion ($m_{\tilde{t}} \sim 500 \text{ GeV} \dots$ (few) TeV)

LSP:

• typically higgsino

gravitino:

• $m_{
m 3/2}\gtrsim$ 20 TeV (from Higgs mass)

Collider Phenomenology I

case: only $m_{\tilde{h}} < \text{TeV}$

- ℓ too soft to trigger on, huge backgrounds with \not{E}_T $\Rightarrow \tilde{h}$ -search at LHC seems hopeless

case: $m_{\tilde{t}_1}, m_{\tilde{h}} < \text{TeV}$

- stop production: $\tilde{t} \to b + \tilde{h}^+ \to (b\text{-jet}) + \not\!\!{E_T} + \text{soft} \ \ell$
- distinct from vanilla SUSY:
 - b-jet \neq u,d-jets (higher multiplicity, larger spread, ...)
 - lacking events with hard isolated leptons
 Bobrovskyi et al., JHEP 1201 (2012)

problem: b-jet often fail hadronic activity cuts

Collider Phenomenology II

• gluinos detectable for $m_{\widetilde{g}} \lesssim 2.5 \text{ TeV}$

Baer et al., JHEP 0909 (2009)

Martin W. Winkler (DESY)

Higgsino Dark Matter

• thermal production inefficient

$$\Omega_{\widetilde{h},\text{thermal}} < \Omega_{DM}$$

- non-thermal production:
 - dilaton gets displaced from its minimum by inflation, finite temperature effects

Kalosh et al., JHEP 1204 (2004)

Buchmüller et al., Nucl. Phys. B699 (2004)

$$\Delta s \sim rac{T_R^4}{m_S^2 M_P}$$
 (reheating)

- coherent oscillations, redshift as (scale factor)⁻³
- dilaton decays directly or indirectly to h

$$\Omega_{\widetilde{h}, {
m non-thermal}} \sim \Omega_{DM} \qquad {
m for} \,\, T_R \sim 10^9 \, {
m GeV}$$

Dark Matter Direct Detection

Conclusion

- low energy implications in a class of MSSM models arising from the heterotic string
- mirage pattern of gaugino masses
- mirage scale fixed by dilaton stabilization
- inverted hierarchy in the sfermion sector
- stop mixing generated through RGE running
- cancellations gluino scalar contribution to M_Z
- typically higgsino LSP
 - distinct LHC signatures in combination with light stop
 - non-thermal higgsino dark matter, testable at XENON1T

reduced fine-tuning