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Introduction

Discrete symmetries are prolific in BSM particle physics model
building

» Required by proton stability and many other constraints

» If unbroken also provide a rationale for the stability of dark

matter

In string/ M theory they arise as geometric symmetries of the
extra dimensions

» There has been much work since 1984 on this topic

» This talk: what do our recent lessons about moduli physics

teach us about discrete symmetries

Goal in a slogan: "A (string) theory of R-parity violation”



Introduction: Fermi and LHC data

Data from the LHC and Fermi/LAT are providing clues about
dark matter

The lack of BSM missing energy results might indicate that
dark matter is NOT a visible sector WIMP

The Higgs data suggests that scalar masses are order 10 - 100
TeV

In our general approach to string/M theory the simplest
models predicted a W-ino LSP and the correct Higgs mass
The analysis of the Fermi data in arXiv:1203.1312, 1204.2797,
1205.1045, 1206.1616 +... suggest DM with large
annihilation x-section

The cross-section and peak is compatible with that of a 145
GeV W-ino (1205.5789)

BUT: all MSSM wimps have been shown to produce too
many low energy (10 GeV) photons (Buchmuller et al/Cohen
et al/Cholis et al '2012)

Suggests breaking of discrete symmetries
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Outline

Summary of predictions

Comments on discrete symmetries

Moduli vevs and breaking discrete symmetries
Attempt " classification” of different possibilities

All have very different DM and LHC phenomenology



Basic Predictions Summary (review:1204.2795)

» Early Universe (post-inflation but pre BBN) is MATTER
dominated by moduli fields

» Many phenomenologists assume that this era is radiation
dominated (i.e. a thermal history)
» String/M theory predicts a non-thermal history

» Dark matter consists of both axions and W-ino like WIMPS.
» The Fermi LAT experiment should see mono-chromatic
photons somewhere in the few hundred GeV region.

» Scalar superpartners of quarks and leptons have masses in the
10's of TeV region i.e. are unobservable at the LHC

» Gauginos, including gluinos and W-inos will be observed at
the LHC since their masses < O(TeV)

» The Higgs mass, my: 115 GeV < my < 129, but in the
M-theory Ga-manifold case:

» 122 GeV < my, < 129 GeV due to a correlation with Witten's
solution of doublet-triplet splitting!



Summary of the Basic Predictions

» Note that both the 2011 ATLAS and CMS data may be
indicating my ~ 126 GeV

» Recent analyses of the Fermi data (arXiv:1203.1312,
1204.2797, 1205.1045, 1206.1616 +..) are all concluding an
excess of high energy, monochromatic galactic photons at
E, ~ 130 GeV

» Both of these are included in the generic predictions above.



Why Discrete Symmetries?

» Discrete symmetries seem to be required, though they often
seem "ad hoc”

» Bottom up: proton decay and the doublet triplet splitting
problem

» They can arise in string/M theory as geometric symmetries of
the extra dimensions ( Strominger/Witten, Ibanez/Ross,
Banks/Dine, Recent work in heterotic theory H.M. Lee,S. Raby,G.
Ross,M.Ratz, R. Schieren, K. SchmidtHoberg P. Vaudrevange/ R.
Kappl, B. Petersen, S. Raby, M.Ratz., R. Schieren P. Vaudrevange
/M. Fallbacher, M.Ratz P. Vaudrevange /M.C. Chen, M.Ratz, C.
Staudt P. Vaudrevange, /M. Fischer, M.Ratz, J. Torrado P.
Vaudrevange)

» BUT: such symmetries MUST be broken, at least partially : x and
Higgsino mass > 120 GeV.

» Moduli fields are charged under discrete symmetries and their VEVs

(z) in the late time minimum of the potential where we are today
generically will spontaneously break the symmetry.



A (string) Theory of R-parity Breaking

» The "offending” operators are (flavour indices suppressed)
» Wgrpy ~ NLLE®+ N'LQD¢ + N"UcU°D¢
» Wgrpy ~ epnlLH,

» Now that we have a better understanding of moduli potentials
we can calculate the couplings generated via the moduli vevs



In M theory on a Gy-manifold

Witten (hep-ph-0201018) showed that discrete symmetries
(G) can

Solve doublet triplet splitting and removing the " offending”
operators

» Since p = 0 the symmetry must be broken

» In arXiv:1102.0556 we showed that p is generated by moduli

vevs which break G

But, for generic breaking there are phenomenological
constraints on the LSP lifetime



Consider this Z;5 example

QL |Ur |Dr | L | E | Hy | Hg | Ty | Ty
4 15 7 10 | 1 | 17 7 9 9
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Z15 example

QL |Ur |Dr | L |E | Hy | Hg | Ty | Ty
4 15 7 10| 1 | 17 7 9 9

NOTE: the charges of different elements of GUT matter multiplets
are different!

This does not disturb gauge coupling unification

CF Mu-Chun Chen and Michael Ratz's talks — they assume that

L + Dgr = 5 both have the same charge. Similar for 10

So can have anomaly free non-R-symmetries.



The size of these couplings arXiv:1102.0556

» (5 sets the terms in Wgrpy to zero

» The moduli vevs do not enter W perturbatively due to axion
shift symmetries

» So, all couplings are generated by Kahler potential terms
(Giudice-Masiero)

» Furthermore, % ~ 0.1 and F, ~ “G¥Tmgomy,

» Result : pu~ %@7‘/2 ~ fewTeV and X's ~ <Z>¢7T725/2 ~ 1071

pl pl



New Results, to appear

» Since p and A's are known we can consider several possibilities
» Class A (General RPV): G is completely broken

» Class B (No RPV): G is partially broken to R-parity so only
is allowed

» Class C (Leptonic RPV): G is partially broken to a subgroup
which allows LH, and LQD*c only e.g. Z1g8 — Z3

» Class D (Baryonic RPV): G partially broken and allows
UcU°DE* only
» Others?..



Phenomenology of Case A, ” Generic RPV”
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G broken completely

All operators are present

Proton stability requires, in particular, that \ey, < 10720
In particular, € is required to be < 10~'° TUNED

If it were, then W-ino would decay quickly inside the LHC
detectors

The Fermi ~-ray line might then be produced via the hidden
sector

LHC limits on gluino mass are reduced to ~ 500 GeV.



Phenomenology of Case B, "No RPV”

G broken to R-parity

Only 1 generated

LSP is stable

LHC predictions as reviewed in 1204.2794

Cannot explain Fermi line
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Phenomenology of Case C, " Leptonic RPV”
» G broken but allows y, LH, and QLD

» Proton stable

» Neutrino masses require € < 1073 (Banks,Grossman,Nadir,Nir
hep-ph/9505248; Nilles, Polansky hep-ph/9606388; Hempfling

ph/9511288)
» If  and By are "aligned” in flavour space e suppressed

» This happens in M theory and probably other moduli vacua in
string theory (see next slide) due to suppressed F, and slightly

suppressed (z)

» Now, LSP lifetime becomes order 10~8 — 10719 seconds i.e.

centimetres to metres

» So, W-ino decay will produced displaced charged tracks
(WO = WHp™ — etven™)

» Very interesting LHC phenomenology, under investigation.

» This case also allows the possibility of " explaining Fermi” with

the hidden sector



Moo = M3/2 KHua—FkKHuaE
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From the leading contribution to the Kahler potential terms:
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where P,, (), are O(1) coefficients in general, one finds :

Syt FSi
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pl pl
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Then, using the result that (F) < (S;)mg /2 [1102.0556] so that
the terms proportional to (F1) and (F%2) are negligible to a very
good approximation, one gets:

Blia ~ 2777‘3/2 Mo (4)



Conclusions

» In vacua with suppressed gaugino masses, the moduli potential
allows one to estimate the size of R-parity violating effects

» This seems to require that discrete symmetries are only
partially broken

» Leads to a rich phenomenology at the LHC

» Allows the possibility of finding a hidden sector explanation of
the Fermi ~-ray line if it is DM






Example: Moduli Stabilization in M theory

Basic (old, but great) idea that strong dynamics in the hidden
sector:

1. Generates the hierarchy between m,; and My,

2. That supersymmetry breaking will also stabilize the moduli
Realised for the first time in string/M theory by considering
M theory on G2-manifolds
In fact, strong hidden sector dynamics generates the hierarchy,
the moduli potential and supersymmetry breaking
simultaneously!

There are two INTEGER parameters P, () which determine
agqur, Mcur, Mpl» mg /o all consistently.



Moduli Stabilzation in M theory

» Moduli vevs s; ~ 3Q =
» So, eg, =6,7,8,9
= Vol(X)M?; ~ 7/3 M7y

2
®gur

OlGUT

1/3
> MGUT = MllaG/UT
7/2 ff
1Q=P[
> My = mp =S g r

_ 14(3(Q=P)-2) o _p_

> Peff = 3(3(Q—P)—2\/m) 60 when Q P 3

> So, mgsp ~ O(50) TeV.Note: Q — P >3,s0Q — P =4
doesn’t work.

» So, moduli can decay before BBN.

» There are two INTEGER parameters P, () which determine
agur; Maur, Mpi, m3/o all consistently.



The Spectrum in String/M theory

In string/M theory in the classical limit a positive
cosmological constant is not possible.

» ‘Pure moduli dynamics has an anti de Sitter vacuum’

v
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Therefore, the field which dominates supersymmetry breaking
is not a modulus

e.g. a matter field

In M theory this is a hidden sector matter field
Froduli ~ QGUTMg/2Mpl

Leads to a Wino LSP

Note: this is NOT pure AMSB in the gaugino sector, but
similar to it.



A New Mass Scale

Direct consequences of having moduli with masses of order 10
- 100 TeV include:

The upper limit on the axion decay constant is lifted to close
to the GUT scale.

This solves a long outstanding problem in string/M theory.
Hence, axions will make up a significant fraction of dark
matter without fine tuning!

If the LSP is stable, it will be produced when the moduli
decay.

The relic density comes out about right for a 100-200 GeV
We-ino like LSP.

This is a non-thermal WIMP "Miracle’.So dark matter is
mixed: W-ino and axion.

The W-ino has the right annihilation cross-section to explain
the gamma line ‘signal’ (eg arXiv:1204.2797) in Fermi data
(see arXiv:1205.5789)



Axion-

>

Wino dark matter and the Fermi ‘signal’

Several recent analyses of the Fermi data (arXiv:1203.1312,
1204.2797, 1205.1045, 1206.1616) are all concluding an
excess of high energy, monochromatic galactic photons at
E, ~ 130 GeV

The cross-section for DM annihilation for the photon signal is

roughly ov(xx — 7X) ~ 10727 cm3s—1.

Thermal WIMP relics have cvioq; ~ 3 X 10726 cm3s~!. Since
annihilation to photons is a one-loop process this implies that
typical thermal WIMPs cannot produce the required number

of photons.

Non-thermal WIMP relics, such as a W-ino with mass 145
GeV have a much larger total ov of the right order to produce
the 130 GeV ~-line by 1-loop annihilating to Z+.

Further: fitting the signal in detail shows that roughly 50% of
dark matter is W-ino like. The rest is interpreted as axions!!



