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Introduction

I Discrete symmetries are prolific in BSM particle physics model
building

I Required by proton stability and many other constraints

I If unbroken also provide a rationale for the stability of dark
matter

I In string/M theory they arise as geometric symmetries of the
extra dimensions

I There has been much work since 1984 on this topic

I This talk: what do our recent lessons about moduli physics
teach us about discrete symmetries

I Goal in a slogan: ”A (string) theory of R-parity violation”



Introduction: Fermi and LHC data
I Data from the LHC and Fermi/LAT are providing clues about

dark matter
I The lack of BSM missing energy results might indicate that

dark matter is NOT a visible sector WIMP
I The Higgs data suggests that scalar masses are order 10 - 100

TeV
I In our general approach to string/M theory the simplest

models predicted a W-ino LSP and the correct Higgs mass
I The analysis of the Fermi data in arXiv:1203.1312, 1204.2797,

1205.1045, 1206.1616 +... suggest DM with large
annihilation x-section

I The cross-section and peak is compatible with that of a 145
GeV W-ino (1205.5789)

I BUT: all MSSM wimps have been shown to produce too
many low energy (10 GeV) photons (Buchmuller et al/Cohen
et al/Cholis et al ’2012)

I Suggests breaking of discrete symmetries



LHC SUSY Limits
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Outline

I Summary of predictions

I Comments on discrete symmetries

I Moduli vevs and breaking discrete symmetries

I Attempt ”classification” of different possibilities

I All have very different DM and LHC phenomenology



Basic Predictions Summary (review:1204.2795)

I Early Universe (post-inflation but pre BBN) is MATTER
dominated by moduli fields

I Many phenomenologists assume that this era is radiation
dominated (i.e. a thermal history)

I String/M theory predicts a non-thermal history

I Dark matter consists of both axions and W -ino like WIMPS.

I The Fermi LAT experiment should see mono-chromatic
photons somewhere in the few hundred GeV region.

I Scalar superpartners of quarks and leptons have masses in the
10’s of TeV region i.e. are unobservable at the LHC

I Gauginos, including gluinos and W -inos will be observed at
the LHC since their masses ≤ O(TeV)

I The Higgs mass, mh: 115 GeV ≤ mh ≤ 129, but in the
M -theory G2-manifold case:

I 122 GeV ≤ mh ≤ 129 GeV due to a correlation with Witten’s
solution of doublet-triplet splitting!



Summary of the Basic Predictions

I Note that both the 2011 ATLAS and CMS data may be
indicating mh ∼ 126 GeV

I Recent analyses of the Fermi data (arXiv:1203.1312,
1204.2797, 1205.1045, 1206.1616 +..) are all concluding an
excess of high energy, monochromatic galactic photons at
Eγ ∼ 130 GeV

I Both of these are included in the generic predictions above.



Why Discrete Symmetries?

I Discrete symmetries seem to be required, though they often
seem ”ad hoc”

I Bottom up: proton decay and the doublet triplet splitting
problem

I They can arise in string/M theory as geometric symmetries of
the extra dimensions ( Strominger/Witten, Ibanez/Ross,
Banks/Dine, Recent work in heterotic theory H.M. Lee,S. Raby,G.
Ross,M.Ratz, R. Schieren, K. SchmidtHoberg P. Vaudrevange/ R.
Kappl, B. Petersen, S. Raby, M.Ratz., R. Schieren P. Vaudrevange
/M. Fallbacher, M.Ratz P. Vaudrevange /M.C. Chen, M.Ratz, C.
Staudt P. Vaudrevange, /M. Fischer, M.Ratz, J. Torrado P.
Vaudrevange)

I BUT: such symmetries MUST be broken, at least partially : µ and
Higgsino mass ≥ 120 GeV.

I Moduli fields are charged under discrete symmetries and their VEVs
〈z〉 in the late time minimum of the potential where we are today
generically will spontaneously break the symmetry.



A (string) Theory of R-parity Breaking

I The ”offending” operators are (flavour indices suppressed)

I WRPV ∼ λ′LLEc + λ′′LQDc + λ′′′U cU cDc

I WRPV ∼ εµLHu

I Now that we have a better understanding of moduli potentials
we can calculate the couplings generated via the moduli vevs



In M theory on a G2-manifold

I Witten (hep-ph-0201018) showed that discrete symmetries
(G) can

I Solve doublet triplet splitting and removing the ”offending”
operators

I Since µ = 0 the symmetry must be broken

I In arXiv:1102.0556 we showed that µ is generated by moduli
vevs which break G

I But, for generic breaking there are phenomenological
constraints on the LSP lifetime



Consider this Z18 example
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Z18 example

QL UR DR L E Hu Hd Tu Td
4 15 7 10 1 17 7 9 9

NOTE: the charges of different elements of GUT matter multiplets
are different!
This does not disturb gauge coupling unification
CF Mu-Chun Chen and Michael Ratz’s talks – they assume that
L+DR = 5 both have the same charge. Similar for 10
So can have anomaly free non-R-symmetries.



The size of these couplings arXiv:1102.0556

I G sets the terms in WRPV to zero

I The moduli vevs do not enter W perturbatively due to axion
shift symmetries

I So, all couplings are generated by Kahler potential terms
(Giudice-Masiero)

I Furthermore, 〈z〉mpl
∼ 0.1 and Fz ∼ αGUT

4π m3/2mpl

I Result : µ ∼ 〈z〉m3/2

mpl
∼ fewTeV and λ’s ∼ 〈z〉m3/2

m2
pl
∼ 10−15



New Results, to appear

I Since µ and λ’s are known we can consider several possibilities

I Class A (General RPV): G is completely broken

I Class B (No RPV): G is partially broken to R-parity so only µ
is allowed

I Class C (Leptonic RPV): G is partially broken to a subgroup
which allows LHu and LQDc only e.g. Z18 → Z3

I Class D (Baryonic RPV): G partially broken and allows
U cU cDc only

I Others?..



Phenomenology of Case A, ”Generic RPV”

I G broken completely

I All operators are present

I Proton stability requires, in particular, that λ′′′εyb ≤ 10−25

I In particular, ε is required to be ≤ 10−10 TUNED

I If it were, then W-ino would decay quickly inside the LHC
detectors

I The Fermi γ-ray line might then be produced via the hidden
sector

I LHC limits on gluino mass are reduced to ∼ 500 GeV.



Phenomenology of Case B, ”No RPV”

I G broken to R-parity

I Only µ generated

I LSP is stable

I LHC predictions as reviewed in 1204.2794

I Cannot explain Fermi line



Phenomenology of Case C, ”Leptonic RPV”

I G broken but allows µ, LHu and QLD

I Proton stable

I Neutrino masses require ε ≤ 10−3 (Banks,Grossman,Nadir,Nir
hep-ph/9505248; Nilles, Polansky hep-ph/9606388; Hempfling
ph/9511288)

I If µ and Bµ are ”aligned” in flavour space ε suppressed

I This happens in M theory and probably other moduli vacua in
string theory (see next slide) due to suppressed Fz and slightly
suppressed 〈z〉

I Now, LSP lifetime becomes order 10−8 − 10−10 seconds i.e.
centimetres to metres

I So, W-ino decay will produced displaced charged tracks
(W̃ 0 →W+µ− → e+νeµ

−)

I Very interesting LHC phenomenology, under investigation.

I This case also allows the possibility of ”explaining Fermi” with
the hidden sector



µα = m3/2KHuα − F k̄KHu α k̄

Bµα = (2m2
3/2KHuα −m3/2 F

k̄KHu α k̄ +m3/2 F
kKHu αk)−

(m3/2F
mKnl̄Kl̄mHu

Knα + (Hu ↔ Lα))−

Fn F m̄(
1
2
KHuαnm̄ −Kjl̄Kl̄nHu

Kjm̄α + (Hu ↔ Lα))(1)

From the leading contribution to the Kahler potential terms:

K ⊃ Pα
(S1)†

mpl
Hu Lα +Qα

(S2)
mpl

Hu Lα, (2)

where Pα, Qα are O(1) coefficients in general, one finds :

µα = Pα
(S1)†

mpl
m3/2 + Pα

〈FS1〉
mpl

Bµα = 2Pα
(S1)†

mpl
m2

3/2 + Pα
(S1)†

mpl
m3/2 +Qα

〈FS2〉
mpl

m3/2(3)



Then, using the result that 〈FSi〉 � 〈Si〉m3/2 [1102.0556] so that

the terms proportional to 〈FS1〉 and 〈FS2〉 are negligible to a very
good approximation, one gets:

Bµα ' 2m3/2 µα (4)



Conclusions

I In vacua with suppressed gaugino masses, the moduli potential
allows one to estimate the size of R-parity violating effects

I This seems to require that discrete symmetries are only
partially broken

I Leads to a rich phenomenology at the LHC

I Allows the possibility of finding a hidden sector explanation of
the Fermi γ-ray line if it is DM



BACKUP



Example: Moduli Stabilization in M theory

I Basic (old, but great) idea that strong dynamics in the hidden
sector:

1. Generates the hierarchy between mpl and MW

2. That supersymmetry breaking will also stabilize the moduli

I Realised for the first time in string/M theory by considering
M theory on G2-manifolds

I In fact, strong hidden sector dynamics generates the hierarchy,
the moduli potential and supersymmetry breaking
simultaneously!

I There are two INTEGER parameters P,Q which determine
αGUT ,MGUT ,Mpl,m3/2 all consistently.



Moduli Stabilzation in M theory

I Moduli vevs si ∼ 3Q = 1
αGUT

I So, eg, Q=6,7,8,9

I m2
pl = V ol(X)M2

11 ∼ 1

α
7/3
GUT

M2
11

I MGUT = M11α
1/3
GUT

I m3/2 = mpl
α

7/2
GUT√
π
|Q−P |
Q e

−
Peff
Q−P

I Peff = 14(3(Q−P )−2)

3(3(Q−P )−2
√

6(Q−P ))
∼ 60 when Q− P = 3

I So, m3/2 ∼ O(50) TeV.Note: Q− P ≥ 3, so Q− P = 4
doesn’t work.

I So, moduli can decay before BBN.

I There are two INTEGER parameters P,Q which determine
αGUT ,MGUT ,Mpl,m3/2 all consistently.



The Spectrum in String/M theory

I In string/M theory in the classical limit a positive
cosmological constant is not possible.

I ‘Pure moduli dynamics has an anti de Sitter vacuum’

I Therefore, the field which dominates supersymmetry breaking
is not a modulus

I e.g. a matter field

I In M theory this is a hidden sector matter field

I Fmoduli ∼ αGUTm3/2mpl

I Leads to a Wino LSP

I Note: this is NOT pure AMSB in the gaugino sector, but
similar to it.



A New Mass Scale

I Direct consequences of having moduli with masses of order 10
- 100 TeV include:

I The upper limit on the axion decay constant is lifted to close
to the GUT scale.

I This solves a long outstanding problem in string/M theory.
Hence, axions will make up a significant fraction of dark
matter without fine tuning!

I If the LSP is stable, it will be produced when the moduli
decay.

I The relic density comes out about right for a 100-200 GeV
W-ino like LSP.

I This is a non-thermal WIMP ’Miracle’.So dark matter is
mixed: W-ino and axion.

I The W-ino has the right annihilation cross-section to explain
the gamma line ‘signal’ (eg arXiv:1204.2797) in Fermi data
(see arXiv:1205.5789)



Axion-Wino dark matter and the Fermi ‘signal’

I Several recent analyses of the Fermi data (arXiv:1203.1312,
1204.2797, 1205.1045, 1206.1616) are all concluding an
excess of high energy, monochromatic galactic photons at
Eγ ∼ 130 GeV

I The cross-section for DM annihilation for the photon signal is
roughly σv(χχ→ γX) ∼ 10−27 cm3s−1.

I Thermal WIMP relics have σvtotal ∼ 3× 10−26 cm3s−1. Since
annihilation to photons is a one-loop process this implies that
typical thermal WIMPs cannot produce the required number
of photons.

I Non-thermal WIMP relics, such as a W-ino with mass 145
GeV have a much larger total σv of the right order to produce
the 130 GeV γ-line by 1-loop annihilating to Zγ.

I Further: fitting the signal in detail shows that roughly 50% of
dark matter is W-ino like. The rest is interpreted as axions!!


