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Introduction
Heterotic string on 6d manifold X preserving 4 supercharges:

X must admit SU(3) structure

SU(3) structure characterized by forms        satisfying (J,Ω)

J ∧ J ∧ J = −3

4
iΩ ∧ Ω̄ Ω ∧ J = 0

SU(3) structures classified by 5 torsions classes                with W1, . . . ,W5

dJ = −3

2
Im(W1Ω̄) +W4 ∧ J +W3

dΩ = −W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω
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M4 H φname Wi properties

max. symm. 0 constCY Wi = 0 complex
 Kahler, CY

half-flat domain wall 0 const W−
1 =W−

2 = 0
W4 =W5 = 0

Strominger’s max. symm. �= 0 varies
W1 =W2 = 0
W4 =W5/2 = dφ complex

gen. half-flat domain wall �= 0 varies W−
1 =W−

2 = 0
W4 =W5/2 = dφ

nearly Kahler domain wall 0 const only W+
1 �= 0

Interesting classes of SU(3) structure manifolds:
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M4 H φname Wi properties

max. symm. 0 constCY Wi = 0 complex
 Kahler, CY

half-flat domain wall 0 const W−
1 =W−

2 = 0
W4 =W5 = 0

Strominger’s max. symm. �= 0 varies
W1 =W2 = 0
W4 =W5/2 = dφ complex

gen. half-flat domain wall �= 0 varies W−
1 =W−

2 = 0
W4 =W5/2 = dφ

nearly Kahler domain wall 0 const only W+
1 �= 0

Interesting classes of SU(3) structure manifolds:

Why allow for a 4d domain wall?

• Domain wall still consistent with 4d covariant theory

• But 4d superpotential, e.g.             , has runaway directions
  and domain wall is “simplest” solution.

W = eiT
i
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Two main questions addressed in this talk:

• In the context of half-flat/nearly Kahler manifolds:

  Can domain wall vacuum be lifted to a maximally-symmetric one,
  for example by α’ corrections or non-perturbative effects?

• In the context of generalized half-flat manifolds:

   Is there a new perspective on CY compactifications with H-flux?
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Cosets as examples of half-flat mirror spaces

half-flat mirror spaces: forms          and            with (ωi, ω̃
j) (αA,β

B)

dωi = eiβ
0 , dα0 = eiω̃

i

half-flat structure: J = tiωi , Ω = ZAαA +GAβ
A

(Gurrieri, Louis, Micu, Waldram, 2002)
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Cosets as examples of half-flat mirror spaces

half-flat mirror spaces: forms          and            with (ωi, ω̃
j) (αA,β

B)

dωi = eiβ
0 , dα0 = eiω̃

i

torsion parameters

half-flat structure: J = tiωi , Ω = ZAαA +GAβ
A

(Gurrieri, Louis, Micu, Waldram, 2002)

Cosets as explicit examples: G

H
=

SU(3)

U(1)2
,

Sp(2)

SU(2)× U(1)
,

G2

SU(3)

(Kapetanakis, Zoupanos, 1992)
(Lust, 1986)

........
(Chatzistavrakidis, Zoupanos, 2009)
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Cosets as examples of half-flat mirror spaces

half-flat mirror spaces: forms          and            with (ωi, ω̃
j) (αA,β

B)

dωi = eiβ
0 , dα0 = eiω̃

i

torsion parameters

half-flat structure: J = tiωi , Ω = ZAαA +GAβ
A

focus on this one

(Gurrieri, Louis, Micu, Waldram, 2002)

Cosets as explicit examples: G

H
=

SU(3)

U(1)2
,

Sp(2)

SU(2)× U(1)
,

G2

SU(3)

(Kapetanakis, Zoupanos, 1992)
(Lust, 1986)

........
(Chatzistavrakidis, Zoupanos, 2009)
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From the above SU(3) structure forms we can construct a unique compatible metric [24], which coincides

with the most general G-invariant metric on G/H. For all three cases it is given by

ds
2
= R

2
1 (e

1 ⊗ e
1
+ e

2 ⊗ e
2
) +R

2
2 (e

3 ⊗ e
3
+ e

4 ⊗ e
4
) +R

2
3 (e

5 ⊗ e
5
+ e

6 ⊗ e
6
) (3.6)

where for SU(3)/U(1)
2
the parameters R1, R2 and R3 are independent, for Sp(2)/SU(2)×U(1) they are

restricted by R1 = R3 and for G2/SU(3) by R1 = R2 = R3. Hence, we recognise the parameters Ri as

“radii” of the coset, determining the volume and shape of the space.

Having introduced G-invariant geometry and SU(3) structure on our cosets, all required tools to solve

the geometric sector of the heterotic string, that is, the Killing spinor equations (2.26) and (2.32), are

available. This has been known for some time and was first realised in Ref. [25]. The additional technical

difficulty of heterotic string compactifications is the construction of vector bundles which satisfy the

Hermitean Yang-Mills equations (2.35), (2.36). In past works, this has usually been approached using an

Ansatz similar to the standard embedding. We will adopt the bundle construction developed in Ref. [11]

which contains the standard embedding Ansatz as special case. We will comment on this further below.

Before we proceed with constructing vector bundles, note that solving the Bianchi identity (2.4) requires

knowledge of the Levi-Cevita connection which we now discuss.

3.2 Half-flat mirror geometry of the cosets

We would now like to review the half-flat mirror geometry, in the sense of Section 2.4, for the three cosets

introduced in the previous subsection. Technical details can be found in Appendix B. We recall that

half-flat mirror geometry, in analogy with Calabi-Yau manifolds, is defined by a set of two-forms, {ωi},
a set of dual four-forms, {ω̃i}, and a set {αA,βB} of symplectic three-forms. Unlike in the Calabi-Yau

case, these forms are, in general, no longer closed but instead satisfy a set of differential relations (2.39)

which involve the torsion parameters ei.

It turns out that for all three cosets under consideration, there is only a single pair, {α0,β0}, of

symplectic three-forms in addition to a certain number of two- and four-form pairs, {ωi, ω̃i}. A subset,{ωr}
of the two-forms which we label by indices r, s, . . . are, in fact, closed. For SU(3)/U(1)

2
these forms are

explicitly given by

ω1 = − 1
2π

�
e
12

+
1
2e

34 − 1
2e

56
�

ω̃1
=

4π
3V0

�
2e

1234
+ e

1256 − e
3456

�

ω2 = − 1
4π

�
e
12

+ e
34
�

ω̃2
= −4π

V0

�
e
1234

+ e
1256

�

ω3 =
1
3π

�
e
12 − e

34
+ e

56
�

ω̃3
=

π
V0

�
e
1234 − e

1256
+ e

3456
�

α0 =
π

2V0

�
e
136 − e

145
+ e

235
+ e

246
�

β0
=

1
2π

�
e
135

+ e
146 − e

236
+ e

245
�

(3.7)

In particular, there are three pairs of two- and four-forms in this case. The exterior derivatives of ω3

and α0 are given by dω3 = β0
and dα0 = ω̃3

, while all other forms are closed. This means the closed

two-forms are ωr, where r = 1, 2. Comparing with the general differential relations (2.39) for half-flat

mirror geometry this shows that the three torsion parameters are given by (e1, e2, e3) = (0, 0, 1).

The coset Sp(2)/SU(2) × U(1) has only two pairs of two- and four-forms and the explicit expressions

read

ω1 =
1
2π

�
e
12

+ 2e
34

+ e
56
�

ω̃1
=

π
3V0

�
e
1234

+ 2e
1256

+ e
3456

�

ω2 =
1
6π

�
e
12 − e

34
+ e

56
�

ω̃2
=

2π
V0

�
e
1234 − e

1256
+ e

3456
�

α0 =
π

2V0

�
e
136 − e

145
+ e

235
+ e

246
�

β0
=

1
2π

�
e
135

+ e
146 − e

236
+ e

245
�

(3.8)

10

``natural” vielbein            from left-inv. one-form on SU(3): e1, . . . , e6
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``natural” vielbein            from left-inv. one-form on SU(3): e1, . . . , e6

torsion parameters: (e1, e2, e3) = (0, 0, 1)
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10

``natural” vielbein            from left-inv. one-form on SU(3): e1, . . . , e6

torsion parameters: (e1, e2, e3) = (0, 0, 1)

4d “moduli” fields: 3 T-moduli                 T i = ti + iτ i

S = s+ iσdilaton

no ``complex structure” moduli
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K = − ln(S + S̄)− lnκ , κ = dijkt
itjtk

W ∼
�

X
Ω ∧ (H + idJ) ∼ eiT

i = T
3

runaway directions -> domain wall

(Gurrieri, Lukas, Micu, 2004)Four-dimensional theory:
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K = − ln(S + S̄)− lnκ , κ = dijkt
itjtk

W ∼
�

X
Ω ∧ (H + idJ) ∼ eiT

i = T
3

runaway directions -> domain wall

So far this generalizes to all half-flat mirror manifolds, but 
gauge fields are difficult to deal with in general....

(Gurrieri, Lukas, Micu, 2004)Four-dimensional theory:
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Gauge fields on cosets

View    as a principle bundle                with typical fiber    .G G → G/H H

Every representation                   leads to an associated
vector bundle with typical fiber   .

ρ : H → Gl(V )
V
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Gauge fields on cosets

View    as a principle bundle                with typical fiber    .G G → G/H H

Every representation                   leads to an associated
vector bundle with typical fiber   .

ρ : H → Gl(V )
V

For                 we have             .SU(3)/U(1)2 H = U(1)2

p = (p, q)Irreducible repr.   labeled by two charges            .  ρ

-> line bundles              , with L = OX(p) c1(L) = pω1 + q ω2
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Take vector bundles to be sums of line bundles

V =
n�

a=1

OX(pa) where c1(V ) ∼
n�

a=1

pa = 0

so that structure group of    is                              .  V S(U(1)n) ⊂ SU(n) ⊂ E8
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On cosets, everything explicit including connection on V

Take vector bundles to be sums of line bundles

V =
n�

a=1

OX(pa) where c1(V ) ∼
n�

a=1

pa = 0

so that structure group of    is                              .  V S(U(1)n) ⊂ SU(n) ⊂ E8
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On cosets, everything explicit including connection on V

HYM equations:                                      drjkp
r
at

jtk = 0

t1 = t2 = 0 T = T 3 Sfixes             , leaves         ,     flat  

Take vector bundles to be sums of line bundles

V =
n�

a=1

OX(pa) where c1(V ) ∼
n�

a=1

pa = 0

so that structure group of    is                              .  V S(U(1)n) ⊂ SU(n) ⊂ E8
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On cosets, everything explicit including connection on V

HYM equations:                                      drjkp
r
at

jtk = 0

t1 = t2 = 0 T = T 3 Sfixes             , leaves         ,     flat  

Take vector bundles to be sums of line bundles

V =
n�

a=1

OX(pa) where c1(V ) ∼
n�

a=1

pa = 0

so that structure group of    is                              .  V S(U(1)n) ⊂ SU(n) ⊂ E8

-> X nearly Kahler
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Including α’ corrections 

Bianchi identity: dH =
α�

4

�
trF ∧ F + tr F̃ ∧ F̃ − trR− ∧R

−
�
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bundle parameters pa
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bundle parameters pa
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bundle parameters p̃a

Can be solved:                      -> Killing spinor equations H ∼ µ(pa, p̃a)α0

X remains half-flat (nearly Kahler)
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Including α’ corrections 

Bianchi identity: dH =
α�

4

�
trF ∧ F + tr F̃ ∧ F̃ − trR− ∧R

−
�

observable sector,
bundle parameters pa

hidden sector,
bundle parameters p̃a

K = − ln(S + S̄)− 3 ln(T + T̄ )

W ∼
�

X
Ω ∧ (H + idJ) ∼ T + µ

Can now fix remaining T-modulus but dilaton still runaway...

Can be solved:                      -> Killing spinor equations H ∼ µ(pa, p̃a)α0

X remains half-flat (nearly Kahler)
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Moduli stabilization 

Add gaugino condensate: W = T + µ+ ke−cS

S = (x+ iy)/c
T = t+ iτ
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Moduli stabilization 

Add gaugino condensate: W = T + µ+ ke−cS

S = (x+ iy)/c
T = t+ iτ

F-flat conditions                 lead to        ,           and           FS = FT = 0 τ = 0 y = 0,π

(1− x)e−x =
µ

k
t =

3x

1− x
µ

-> Susy AdS vacua
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Moduli stabilization 

Add gaugino condensate: W = T + µ+ ke−cS

S = (x+ iy)/c
T = t+ iτ

F-flat conditions                 lead to        ,           and           FS = FT = 0 τ = 0 y = 0,π

(1− x)e−x =
µ

k
t =

3x

1− x
µ

-> Susy AdS vacua

Two main differences to CY gaugino condensation and H-flux:

• Additional T-dependent contribution from torsion

• H-flux is not harmonic but bundle-induced
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What about consistent field values,       (α’ expansion valid)
and        (weak coupling)?

t > 1
s > 1

Tension: large   needs large flux    and large   requires small   t µ s µ

“Compromise” values for    which lead to marginally consistent field
 values can be obtained for suitable bundle choices.

µ
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CY manifolds and NS flux 

Consider generalized half-flat space X with         and domain wall: H �= 0
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CY manifolds and NS flux 

dΩ− = 2dφ ∧ Ω−

J ∧ dJ = J ∧ J ∧ dφ

J ∧H = ∗dφ
dJ = 2φ�Ω− − Ω�

− − 2dφ ∧ J + ∗H
dΩ+ = J ∧ J

� − φ�
J ∧ J + 2dφ ∧ Ω+

Ω− ∧H = 2φ� ∗ 1
Ω+ ∧H = 0

Consider generalized half-flat space X with         and domain wall: H �= 0
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Is there a CY solutions,                , with non-zero flux?dJ = dΩ = 0

Monday, October 1, 2012



CY manifolds and NS flux 
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J ∧ dJ = J ∧ J ∧ dφ

J ∧H = ∗dφ
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Is there a CY solutions,                , with non-zero flux?dJ = dΩ = 0

ok for dφ = 0
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CY manifolds and NS flux 

dΩ− = 2dφ ∧ Ω−

J ∧ dJ = J ∧ J ∧ dφ

J ∧H = ∗dφ
dJ = 2φ�Ω− − Ω�

− − 2dφ ∧ J + ∗H
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� − φ�
J ∧ J + 2dφ ∧ Ω+
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Consider generalized half-flat space X with         and domain wall: H �= 0

Is there a CY solutions,                , with non-zero flux?dJ = dΩ = 0

ok for dφ = 0
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We are left with:

Ω�
− = 2φ�Ω− + ∗H

2φ� ∗ 1 = Ω− ∧H

J ∧ J � = φ�J ∧ J

flow eqs. and Ω+ ∧H = 0
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We are left with:

Ω�
− = 2φ�Ω− + ∗H

2φ� ∗ 1 = Ω− ∧H

J ∧ J � = φ�J ∧ J

flow eqs. and Ω+ ∧H = 0

A domain wall solution to these eqs. exists. It can also be obtained 
by solving 4d theory on CY with superpotential

W =

�

X
Ω ∧H = nAZ

A −m
A
GA
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We are left with:

Ω�
− = 2φ�Ω− + ∗H

2φ� ∗ 1 = Ω− ∧H

J ∧ J � = φ�J ∧ J

flow eqs. and Ω+ ∧H = 0

A domain wall solution to these eqs. exists. It can also be obtained 
by solving 4d theory on CY with superpotential

W =

�

X
Ω ∧H = nAZ

A −m
A
GA

Change of perspective:

• Previously: H-flux requires non-Kahler spaces (Strominger system)

• Now: Keep space CY even in the presence of H-flux
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We are left with:

Ω�
− = 2φ�Ω− + ∗H

2φ� ∗ 1 = Ω− ∧H

J ∧ J � = φ�J ∧ J

flow eqs. and Ω+ ∧H = 0

A domain wall solution to these eqs. exists. It can also be obtained 
by solving 4d theory on CY with superpotential

W =

�

X
Ω ∧H = nAZ

A −m
A
GA

Change of perspective:

• Previously: H-flux requires non-Kahler spaces (Strominger system)

• Now: Keep space CY even in the presence of H-flux

+ : CY methods available - : need to lift domain wall
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Conclusion
• Non-Calabi-Yau compactifications of string theory are interesting
   but progress is hampered by the lack of examples.

• Half-flat and gen. half-flat spaces provide solutions of the het.
  string if combined with a 4d domain wall. 

• Coset provide explicit examples of half-flat spaces and α’
  corrections can be worked out explicitly.

• For cosets, a combination of α’ and non-pert. effects can lift
  the domain wall to AdS. There are consistency issues....

• H-flux is consistent with keeping the internal space CY if the
  4d space-time is a domain wall.

(Larfors, Lust, Tsimpis, 2010)
(Gray, Larfors, Lust, 2012)
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Conclusion
• Non-Calabi-Yau compactifications of string theory are interesting
   but progress is hampered by the lack of examples.

• Half-flat and gen. half-flat spaces provide solutions of the het.
  string if combined with a 4d domain wall. 

• Coset provide explicit examples of half-flat spaces and α’
  corrections can be worked out explicitly.

• For cosets, a combination of α’ and non-pert. effects can lift
  the domain wall to AdS. There are consistency issues....

• H-flux is consistent with keeping the internal space CY if the
  4d space-time is a domain wall.

Thanks!

(Larfors, Lust, Tsimpis, 2010)
(Gray, Larfors, Lust, 2012)
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