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Even in the “golden era” of cosmology, there is a lot we don't understand

The LCDM “standard model” of cosmology is phenomenologically simple but 
not motivated by theory
The inflationary paradigm is still successful after decades, but has hundreds of 
models, non are compelling
Success of the many new surveys, both CMB and LSS, must be utilised and 
interpreted in terms of realistic models
We need as many observables as possible

Non-linear perturbations may contain much more information

Why study primordial non-linearities?
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Planck results:  Vanilla rules!

• Except for anomalies, do they point to anything primordial?

• Is this a surprise?

• Gaussian statistics are not very informative, a window onto 
the early universe made of frosted glass

• A lot of discovery potential has gone for the foreseeable 
future

• Was all of the work done helpful?

• ISW-lensing bispectrum means we need non-G statistics

• Non-trivial results for single-field inflation
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Single-field, slow-roll 
inflation

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
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!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
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lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Planck collab XXII

Harrison-Zeldovich was ruled out with WMAP, now even scale invariance alone is 
convincingly ruled out

Leads to preference for a red spectral index
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Why concave, and what 
does this imply?

• Hence a negative mass squared at horizon crossing, but must have a positive 
mass squared at the minimum, if the potential gives a “graceful exit” from 
inflation

• Non-trivial evolution of the potential during inflation, monomial potentials 
(chaotic inflation) are disfavored

• Substantial progress, but there will always be many models which fit the data

ns � 1 = �6✏+ 2⌘

r =
PT

Ps
= 16✏

r ⌧ 1 ) ✏ ⌧ 1 ) ⌘ < 0
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Only one measured 
inflationary parameter 
• The spectral index, all other parameters consistent with zero (tensors, 

isocurvature modes, non-Gaussianity, running of spectral index, cosmic string 
contribution, lots of additional parameters have been searched for)

• (Also the amplitude of perturbations since COBE, but for all models this is 
an overall scaling of the potential, its not predicted)

• However, notice that it was only in combination with the non-detection of 
gravitational waves that one finds evidence for a concave potential

• Shows that measuring a parameter to be close to zero is still a 
measurement, and may have important implications
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Non-Gaussianity
• Constraints on the “headline” parameters are given,  (WMAP9 in brackets)

• A factor of 2-4 improvement

• The central value always 1/2 sigma from zero

• Differences in the error bars are an artifact of the normalisation of fNL to 
an equilateral triangle, the local model is minimised for this shape, the others 
maximised

• Perhaps the biggest implication is that single-field DBI inflation was already 
ruled out, by the constraint on equilateral non-Gaussianity

• An extremely popular string motivated model of inflation (but ask Cliff/
Gianmassimo/other experts...)

f local

NL

= 2.7± 5.8 (37.2± 19.9),

f equil

NL

= �42± 75 (51± 136),

fortho

NL

= �25± 39 (�245± 100).
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How Gaussian is the CMB?

• Depends heavily on the template for non-Gaussianity one chooses

• For the standard single-source local model

• However if the non-Gaussian term is uncorrelated with the Gaussian term 
then the bound greatly weakens

• So the sky is over 99.99% Gaussian for the first “standard” template, but 
could be almost 10% non-Gaussian in the second case

⇣ = ⇣G +
3

5
f local

NL

⇣2G
p
P = 2⇥ 10�5

|f local

NL

⇣G| . 10�4

⇣ = ⇣G + ↵�2

G, f
local

NL

⇠ ↵3P 3

�/P
2

⇣ ,

↵�2

Gp
P⇣

. 10�1
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Do the bounds on non-G 
rule out multifield inflation?
• NO!

• In fact not even close, multifield models can easily mimic the predictions of 
single field models (at least within foreseeable experimental accuracy)

• Inflation suffers from a lack of predictivity

• In single-field models, the choice of minimum one rolls into and the model 
parameters, as well as the duration of reheating (which value of N to choose 
when calculating the spectral index)

• In multifield models, one (almost) always has to specify initial conditions as 
well, observables may heavily vary depending on these choices

• Don’t know of any model which predicts fNL>>1 for all initial conditions, 
however there are plenty which always predict fNL<<1

• Latter less studied only because they are phenomenologically less interesting 
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If an isocurvature perturbation is converted into the 
adiabatic one after inflation
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Primordial non-Gaussianity, a review

Chris B

May 13, 2013

1 Introduction
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where � is the inflaton field with Gaussian perturbations, and � is any other
field which is subdominant during inflation and has a quadratic potential.
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2 What we hope to learn from non-Gaussianity
and its status after Planck

If the primordial perturbations are Gaussian, then all information is contained
in the power spectrum. A Gaussian distribution is characterised by only two
numbers, the mean value (which is set to zero by the way we define the per-
turbations relative to the background), and the variance. This implies a huge
reduction in the information that we can gain from our measurements. This
e↵ect is even more pronounced since not only are the perturbations close to
Gaussian at each scale, di↵erent scales are related in Fourier by a simple power
law, P / k

ns�1. So far we have measured the amplitude and spectral index
of the perturbations and no other early universe paramaters. There is no sig-
nificant evidence for any features or breaks in the primordial spectrum, and
the data is consistent with the spectral being a constant. Similarly, there is no
evidence for isocurvature perturbations or primordial gravitational waves. It is
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Gaussian inflaton field            subdominant non-G field

r measures the efficiency of the transfer from the initially subdominant field, which is 
isocurvature during inflation
The less efficient the transfer, the more non-G the perturbations, and tauNL is 
relatively more important
However the Gaussian inflaton perturbations are more likely to dominate in this 
limit
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• Previous slide made several assumptions:

• 2 fields, one of which is Gaussian

• Quadratic potential (implies negligble gNL)

• Conversion takes place after the end of inflation 
(important, things work differently if during slow 
roll, and often get slow-roll value of fNL)

• Apart from the third assumption, prediction of 
(local) |fNL|>1 is quite generic. 

• Can we observe fNL=1, if so, when???

12

Review: CB & Choi ’10

Dienstag, 14. Mai 13



Gravity waves?
• Would be amazing, and large discovery potential (factor 10 increase in < decade)

• However only one number, short lever arm

• Single-field consistency relation so out of reach nobody even talks about it 
anymore (maybe with direct detection experiments it could be seen?)

B-Pol website

rT = 16✏, nT = �2✏, rT = �8nT
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Testing single-source 
models?

• Poor prognosis for single-field models

• Looked more hopeful for single-source models 
(any one field generates the primordial curvature 
perturbation)

• For fNL=50 we would have measured both

• Now need an order of magnitude increase in 
sensitivity to tauNL, is this ever possible?

⌧NL =

✓
6fNL

5

◆2
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Multi-source 
generalisation

• In multi-source scenarios, this becomes an inequality

• Lots of effort has gone into making as general a proof as 
possible - it is based on the definitions of the non-linearity 
parameters, not a model of inflation

• Looks impossible to verify a breaking of the inequality, however 
a (very strong) breaking of the equality could still be observed, 
this would prove multiple fields generated the perturbations

• Currently tauNL<2800 at 95% confidence

⌧NL �
✓
6fNL

5

◆2

Suyama & Yamaguchi ’08; Smith et al ’11; Assassi et al ’12, Kehagias & Riotto ’12; Tasinato et al ’12 + more
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Is there anything which 
Planck did not do? 

• Non-Gaussianity could be anything, so infinitely many 
things left to do!

• But of the “mainstream” targets, gNL is the only 
obvious missing target

• In fact, tauNL was the only trispectral shape to be 
constrained so far, huge range left to do (but difficult)

• tauNL is large in the squeezed and collapsed limits, gNL 
only in the squeezed limit

• WMAP and LSS constraints are weak, |gNL|<106

16
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Inhomogeneities

Long wavelength modes will shift the effective background in subpatches
In single-field inflation this shift has no observable consequences
In other cases it matters, especially under the presence of local non-Gaussianity, 
which correlates large and small scale modes
Shift depends on number of efoldings between the two scales l and L 

Nin = ln(L/l)
17
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Our position in a larger Universe

• Think about the long mode L as corresponding to 
the “total” inflated region, denoted with fNL0

• And short mode “l” as our Hubble scale, denoted 
fNLobs

• The observables we measure will depend on the 
location of our observable universe

• The gNL term may be larger than the fNL term, does 
this have consequences?

Implications of the tight bispectrum constraints for the
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I. INTRODUCTION

One of the most keenly anticipated results from the Planck 2013 data release was the measurement

of the primordial bispectrum [1]. Constraints on specific forms of non-Gaussianity, parameterised

by the non-linearity parameter f
NL

, improved by almost an order of magnitude with respect to the

previous WMAP constraints [2].

Given that the bispectrum is only the first in a hierarchy of correlators that parameterise deviations

from an exactly Gaussian distribution, it is interesting to ask whether the tight constraints on f
NL

also

have implications for the likely value of higher-order correlators in general. This is certainly possible

in specific models with a small number of parameters where existing measurements already constrain

the relevant model parameters.

In this letter we show that measurements of f
NL

do provide information on the likely value of

the trispectrum, and higher-order correlators, in inflationary models assuming only that a nearly

scale-invariant spectrum of fluctuations exists on scales slightly larger than our observable horizon

today.

As usual, we start with the local ansatz for the primordial curvature perturbation defined in a large

reference volume (denoted by 0) which may be larger than the observable universe
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where ⇣
G

is a Gaussian random field. Such a local distribution arises naturally when the cosmological

expansion on super-Hubble scales, N =
R
Hdt, is local function of a Gaussian distribution of scalar

field perturbations during inflation, �',

⇣ = N 0�'+
1
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N 000�'3 , (2)18
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Long-short wavelength split

• gNL modulates the local value of fNL

• If |gNL|>105, which is what we need in order for it 
to be detectable, then it will “interfere” with the 
local value of fNL
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Of course Eq. (1) only represents the first three terms in a Taylor series expansion, but it will be

su�cient to illustrate the general principle.

Although f0

NL

represents the most likely value of the f
NL

parameter measured by Planck in our

observable patch, there is a natural variance in the actual value of f
NL

observed in any observable

patch of the larger reference volume, and in inflationary models for the origin of structure, the variance

of the observed f
NL

grows with the trispectrum parameter g
NL

and higher-order correlators.

To demonstrate this we split the first-order (Gaussian) curvature perturbation into long and short

wavelength parts, ⇣
G

= ⇣
G,l

+ ⇣
G,s

, where the splitting scale is defined by the horizon scale today,

so that the short wavelength modes are those which we observe, while the long wavelength mode

modulates the background value in our observable patch. The observed curvature perturbation in our

patch is then given by
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The cubic interaction term is unchanged since we neglected higher order terms in the expansion (1),

in practice this will be a good approximation provided that the coe�cient of the fourth-order term is

small enough, h0
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p
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The current constraints on the non-linearity parameters are [1]
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= 2.7± 5.8, (6)
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but it is important to note that no g
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constraint has yet been made with Planck data (the given

constraint is from WMAP9 data [14]). The forecast 1�� error bar for Planck data has been estimated
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How big is the variation?

3

inflation before our observable scale left the Hubble-horizon during inflation, in which case we have

h�'2

l

i ' P
'

N⇤. We may therefore estimate the typical long wavelength curvature fluctuation

⇣
G,l

⇡
p
P
⇣

N⇤, (9)

where N⇤ is the number of efoldings from the start of inflation until the horizon scale today exited

during inflation. Using
p
P
⇣

' 5⇥10�5, and taking Eq. (8) in order that g
NL

is observable, we require

|fobs

NL

� f0

NL

| & 20
p

N⇤. (10)

We can see that observable g
NL

makes fobs

NL

likely to vary from its background value by more than its

observed upper limit, even if there is only one e-folding before observable scales exited the horizon,

N⇤ = 1, and hence we may conclude that g
NL

is unlikely to be large enough to be observable.

More generally, an extended period of inflation will lead to a large variance in the locally observed

bispectrum parameter, fobs

NL

, proportional to the trispectrum parameter, g
NL

, and the duration of

inflation. A large trispectrum and extended period of inflation before observable scales left the horizon

during inflation, makes small observed values of f
NL

much less likely. If the scalar field has a finite

and positive e↵ective mass-squared (m2 > 0) during inflation then after many e-folds of inflation the

variance of the field reaches an equilibrium value [3, 4]

h�'2

l

i ' 3

8⇡2

H4

m2

, (11)

equivalent to a limiting valueN⇤ ! (2⌘)�1 in Eq. (10) where the slow-roll parameter ⌘ ⌘ m2/3H2 ⌧ 1.

Our result (10) is in contrast to the arguments that most known models predict either g
NL

' f
NL

or g
NL

' f2

NL

[13]. Those arguments give a much tighter bound on g
NL

, but observable g
NL

does

not require such a tight bound. Furthermore, their bound is model dependent and derived on a case

by case basis, whilst ours is almost completely model independent. Our only assumptions are that

the primordial perturbations arise from a spectrum of scalar field fluctuations during inflation and

that the power spectrum remains almost scale invariant on scales slightly larger than the observable

horizon today.

II. DOES THE CONSTRAINT ON fobs

NL

IMPLY AN UPPER LIMIT ON g
NL

?

The probability distribution for the observed value of f
NL

, given a mean value f0

NL

and variance

�2 = g2
NL

NP
⇣

is given by

P (fobs

NL

|�, f0

NL

) =
1p
2⇡�

exp

✓
�(fobs

NL

� f0

NL

)2

2�2

◆
. (12)

We have seen that a large value of � makes a small value of fobs

NL

less likely. Using Bayes theorem,

we may also ask whether a small value of fobs

NL

makes a large value of � unlikely. The probability of

�2 ' g2NLP⇣Nin

Probability of fNL matching the small observed value only around 10% for gNL~106 and Nin~10, 
for the best choice of the global fNL

Model independent result, only assumption is the existence of super horizon perturbations
However note the long tail to positive sigma (the probability decreases as 1/sigma), this means 
we cannot make a constraint on gNL from the tight constraint on fNL

Planck error bar, error bar of  5.8
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From very large to very small scales
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What about the small 
scales?

From a structure formation point of view, this is 
hopeless, we cant use the solar system to 
reconstruct the inflationary potential

The fact we don't see primordial black holes 
(PBHs) does give some constraints
Expect them to form on the horizon scale at the 
time of re-entry, if the over density is order unity
Gravitational waves could also give very small 
scale information (but wait for Lisa/DECIGO)
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Where the constraints come from?

• The Hawking radiation from PBHs must not:

• stop the success of big bang nucleosythesis

• Mess up the CMB

• Be compatible with the observed extragalactic photon background

• PBHs must not have greater energy density than DM (but 
could be a DM candidate)

• Strongly scale/mass constraints in terms of beta, the fraction 
of the energy density of the universe in PBHs satisfies (over many 
scales):
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The Gaussian case

People usually assume this to be a good estimate

Result is accurate to order of 10% (compared to more involved calculation 
using density perturbation with window functions)

               on the relevant PBH scales
There is no theoretical prediction for the amplitude of perturbations on CMB 
scales, so no reason it should be so small on other scales, can we 
extrapolate over 50 efoldings?

P⇣ . 10�2
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Bottom line: Only sensitive to log of the 
observational constraints

So small changes in amplitude of perturbations changes PBH 
formation rate exponentially
We will see that even small non-Gaussianity is very important
PBH formation is very rare, so we are measuring the tails of the 
pdf's, typically larger than 5 sigma deviations
So skewness/kurtosis really matters!

Lets take it into account, and see how the normal constraints on 
the power spectrum change
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Quadratic non-Gaussianity

Results will depend on the sign of the non-Gaussianity, if positive its 
easier to form overdensities because the linear and quadratic terms 
act in the same direction (similarly to the speculated “too big, too early 
clusters” which could be explained by large and positive fNL)
Otherwise the two terms tend to cancel each other, and zeta is 
bounded from above

0
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Large influence of small fNL

Results especially dramatic for negative fNL

If PBHs are detected in the future, a negative fNL (and all higher order 
parameters zero) on the relevant scales is ruled out, unless it has a tiny 
amplitude
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What if gNL was not zero?
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Even things which probably 
dont exist can matter!
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Future prospects

34

• More shapes to be searched for with Planck, lots to do especially with 
the trispectrum

• For shapes already constrained, the local model has the best prospects 
(scale dependent bias)

• The galaxy bispectrum is quite poorly explored

• Don’t expect any significant improvements until Euclid at best

• Higgs field is likely to be a second light degree of freedom during 
inflation (unless itself the inflaton, requires huge non-minimal coupling to 
gravity)

• Anomalies such as power spectrum modulation may be non-Gaussian 
signatures (wait for polarization)

• Large scale magnetic fields definitely exist and are non-Gaussian
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Conclusions

35

• Even today, non-Gaussianity arguably remains the best window 
onto the early universe (and provides the tightest constraints)

• Forecasts are important to tell theorists what remains 
interesting

• PBHs, CMB distortions, 21cm, how much can we hope to see?

• Progress is needed on top-down theories, reheating, 
conversion to standard model, initial conditions

• A way to theoretically discriminate between the plethora of 
surviving models will be essential
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