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Some basic equations
Friedmann:
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a(t) depends on matter.
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Current bounds on H(z) -- Planck v WMAP

WMAP7
(curvature) -- Ωk < 0.008 (95%CL)
(de eqn of state) -- 1+w = 0.001 ± 0.057 -- looks like a cosm const.

If allow variation of form : w(z) = w0+ w’ z/(1+z) then
w0=-0.93 ±0.12 and w’=-0.38 ± 0.65 (68% CL)

H2(z) = H2
0

�
�r(1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + �de exp

�
3

⇤ z

0

1 + w(z�)
1 + z� dz�

⇥⇥
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Planck vs WMAP + SPT
Planck Collaboration: Planck Cosmological Parameters

Table A.1. Comparison of the base ⇤CDM parameters from Planck+WP+highL compared to the parameters determined by S12
from a joint likelihood analysis of SPT and WMAP7 spectra.

Planck+WP+highL WMAP7+SPT (S12)

Parameter Best fit 68% limit Best fit 68% limits

100⌦bh2 . . . . . . . 2.207 2.207 ± 0.027 2.223 2.229 ± 0.037
⌦ch2 . . . . . . . . . . 0.1203 0.1198 ± 0.0026 0.1097 0.1093 ± 0.0040
109As . . . . . . . . . 2.211 2.198 ± 0.056 2.143 2.142 ± 0.061
ns . . . . . . . . . . . . 0.958 0.959 ± 0.007 0.963 0.962 ± 0.010
⌧ . . . . . . . . . . . . . 0.093 0.091 ± 0.014 0.083 0.083 ± 0.014
100✓⇤ . . . . . . . . . 1.0414 1.0415 ± 0.0006 1.0425 1.0429 ± 0.0010
⌦⇤ . . . . . . . . . . . 0.683 0.685 ± 0.017 0.747 0.750 ± 0.020
H0 . . . . . . . . . . . 67.2 67.3 ± 1.2 72.3 72.5 ± 1.9

Fig. A.2. The acoustic scale distance ratio rs/DV (z) divided by
the distance ratio of the best fit WMAP7+SPT base ⇤CDM
cosmology of Table A.1. The points are colour coded as fol-
lows: green star (6dF); pink squares (SDSS DR7 as analyzed
by Percival et al. (2010)); black star (SDSS DR7 as analyzed
by Padmanabhan et al. (2012)); blue cross (BOSS DR9); blue
circles (WiggleZ). Error bars show 1� errors on the data
points. The grey band shows the ±1� range allowed by the
WMAP7+SPT data.

BAO data (see Fig. 15) and shows some tension with the
Riess et al. (2011) measurement of H0, the WMAP7+SPT best
fit cosmology is consistent with the H0 measurement but in se-
rious tension with the BAO measurements. The latter point is il-
lustrated by Fig. A.2, which is equivalent to Fig. 15 but uses the
WMAP7+SPT cosmology as a reference. All of the BAO mea-
surements lie systematically low compared to the WMAP7+SPT
cosmology38. If the WMAP7+SPT parameters were correct, as-
suming the base ⇤CDM cosmology, the BAO experiments must
have systematically underestimated the acoustic distance ratio
by about 5%. This seems implausible for what is essentially a
simple geometric measurement. H12 thus studied extensions to
the standard cosmology that reconcile the WMAP7+SPT power
spectra with the BAO measurements.

Since Planck and the SPT S12 spectra have a large over-
lap range at high multipoles, where both experiments have high
signal-to-noise, there is no need to use WMAP as an intermedi-
ary to establish a relative calibration. We can compare the spec-
tra directly via a joint likelihood analysis using the same fore-

38H12 quote a 2.3% probability of compatibility between the BOSS
measurement and the WMAP7+SPT data

ground model that is used in the main body of this paper. Since
the S12 spectrum is measured at a frequency of 150 GHz, we
first present results using only the Planck 143 ⇥ 143 spectrum
in the Planck likelihood. This reduces sensitivity to the details
of the foreground modelling. Apart from small colour correc-
tions, the foregrounds are identical except for di↵erences in the
Poisson point source amplitudes.

Absolute calibration of the SPT spectra is determined by
comparing with the WMAP7 spectrum in the multipole range
600  `  1000. Since the spectra from both experiments are
noisy in this range, there is a large ⇠ 3% uncertainty in the ab-
solute calibration of the S12. Here we use a version of the SPT
S12 likelihood which does not include marginalization over cal-
ibration uncertainties and self-consistently solve for map cali-
bration factor ySPT

150 between SPT and Planck. (This di↵ers from
the analysis of Calabrese et al. (2013) who use an SPT covari-
ance matrix that includes marginalization over calibration errors
and combine with other experiments without solving for relative
calibration factor.)

The results are shown in Fig. A.3 (a) 39. The best fit ⇤CDM
cosmology is very close to the best fit base ⇤CDM cosmology
of the Planck+WP+highL combination used in the main body
of the paper (shown by the blue lines in the figure). The Planck
spectra dominate the solution and the e↵ect of the SPT points is
to pull the best fit model solution slightly upwards in the multi-
pole range 650 <⇠ ` <⇠ 1500. This is caused by the SPT points at
` <⇠ 1100 which sit high relative to Planck.

We find similar results when we combine the S12 likelihood
with the full Planck+WP+highL likelihood. This is illustrated in
Figs. A.3 (b). Relative to Planck, the SPT spectra lie systemati-
cally high at ` <⇠ 1100. (The Planck spectrum sits high compared
to the best fit spectrum at ` >⇠ 2300, but in this region of the spec-
trum, foreground and beam errors become significant and intro-
duce large correlations between the data points.) The parameter
values for the Planck+S12 fits are listed in Table A.2.

To relate these results to the discrepancy in Fig. A.1 we have
also run MCMC chains with a joint WMAP9 (V+W band)+S12
likelihood, self-consistently solving for a relative calibration fac-
tor, y150

SPT/WMAP, between WMAP9 and S12 and using the fore-
ground model adopted in this paper. The parameter values from
this analysis are listed in the second column of Table A.2. (Note
that, compared to the WMAP7+S12 values listed in Table A.1,
the WMAP9+S12 parameters move a little closer to the Planck
parameters.)

39In Figs A.3 and A.4 we use the window functions provided by S12
to band average the Planck and theory data points at high multipoles. In
Fig. A.4, we band average the Planck and theory data points using the
WMAP9 binning scheme at `  650.

59

► Tension between Planck vs WMAP + South Pole Telescope (SPT) 
► Absolute calibration of SPT determined by matching to WMAP in overlap region 

of 600<$<1000
► Problem traced to this calibration - done in region where data are noisy 
► Evidence points to small excess bias in SPT spectrum in range 650<$<1100
► For “Planck + high $”#use Atacama Cosmology Telescope (ACT) data and SPT 

data at $>2000
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Dark Energy

Planck Collaboration: Planck Cosmological Parameters
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much

48

► Parameterize dark energy using PPF framework of Hu and Sawicki (2007)
► No anisotropic stresses 
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain

Planck Collaboration: Planck Cosmological Parameters

Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on

�2.0 �1.6 �1.2 �0.8 �0.4
w0

�1.6

�0.8

0.0

0.8

1.6

w
a

64

68

72

76

80

84

88

92

H
0

Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much

48

► Mild tension for w<-1 but not 
significant 

► With variable w(a) similar conclusion

Wednesday, 20 March 13

Parameterise eos:

Planck alone weak constraints on DE because of degeneracy of w with H0:

Break with other probes including lensing, SN, BAO ...

Example - if assume wa = 0

Nottingham, March 2013

18

Dark Energy

Planck Collaboration: Planck Cosmological Parameters

�2.0 �1.6 �1.2 �0.8 �0.4
w

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

m
ax

Planck+WP+BAO

Planck+WP+Union2.1

Planck+WP+SNLS

Planck+WP

Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.

�2.0 �1.6 �1.2 �0.8 �0.4
w0

�1.6

�0.8

0.0

0.8

1.6

w
a

Planck+WP+BAO

Planck+WP+Union2.1

Planck+WP+SNLS

Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Parameterize dark energy using PPF framework of Hu and Sawicki (2007)
► No anisotropic stresses 
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Mild tension for w<-1 but not 
significant 

► With variable w(a) similar conclusion

Wednesday, 20 March 13

For me -- a key question how should we parameterise w?

[Tarrant et el 2013]



w = �0.999+0.057
�0.056 �k = �0.0057+0.0067

�0.0068

5

WMAP7 and dark energy
Assume flat univ + 

+BAO+ SNLS:

Drop prior of flat univ: 
WMAP + BAO + 

SNLS:

w = �0.980± 0.053

(Komatsu et al, 2010) 

Drop assumption of 
const w but keep flat 
univ: WMAP + BAO 

+ SNLS:

w0 = �0.93± 0.12
wa = �0.38+0.66

�0.65
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Universe dom by 
Quintessence at:

If:

Univ accelerates 
at: 

Coincidence problem – why now?

Recall:

€ 

−0.11<1+ w < 0.14 Komatsu et al 2008 (WMAP5)

Constraint:



7

The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.

Potential are of impact for DES I think !
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Many approaches to Dark Energy:

 A true cosmological constant -- but why this value?
 Time dependent solutions arising out of evolving scalar fields 

-- Quintessence/K-essence.
 Modifications of Einstein gravity leading to acceleration today.
 Anthropic arguments.
 Perhaps GR but Universe is inhomogeneous.
 Hiding the cosmological constant -- its there all the time but 

just doesn’t gravitate
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String - theory -- where are the realistic models?
`No go’ theorem: forbids cosmic acceleration in cosmological solutions 

arising from compactification of pure SUGR models where internal space is time-
independent, non-singular compact manifold without boundary --[Gibbons] 

Avoid no-go theorem by relaxing conditions of the theorem.
1. Allow internal space to be time-dependent scalar fields (radion)

2. Brane world set up require uplifting terms to achieve de Sitter vacua hence accn

100 150 200 250 300 350 400
s

-2

-1.5

-1

-0.5

0.5
V

100 150 200 250 300 350 400
s

0.2

0.4

0.6

0.8

1

1.2

V

AdS minimum Metastable dS minimum

Example of stabilised scenario: Metastable de Sitter string vacua in TypeIIB string 
theory, based on stable highly warped IIB compactifications with NS and RR three-

form fluxes. [Kachru, Kallosh, Linde and Trivedi 2003]

Metastable minima arises from adding positive energy of anti-D3 brane in warped 
Calabi-Yau space.



10

The String Landscape approach

Type IIB String theory 
compactified from 10 dimensions 

to 4. 

Internal dimensions stabilised by 
fluxes. Assumes natural AdS 
vacuum uplifted to de Sitter 

vacuum through additional fluxes !

Many many vacua ~ 10500 !

Typical separation ~ 10-500 Λpl

Assume randomly distributed, tunnelling allowed between vacua --> 
separate universes . 

Anthropic : Galaxies require vacua < 10-118 Λ pl [Weinberg] Most likely to 
find values not equal to zero!
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Landscape gives a realisation of the multiverse picture. 

There isn’t one true vacuum but many so that makes it almost impossible to find 
our vacuum in such a Universe which is really a multiverse.

So how can we hope to understand or predict why we have our particular 
particle content and couplings when there are so many choices in different parts 

of the universe, none of them special ?

This sounds like bad news, we will rely on anthropic arguments to explain it 
through introducing the correct measures and establishing peaks in probability 

distributions. 

Or perhaps, it isn’t a cosmological constant, but a new field such as 
Quintessence which will eventually drive us to a unique vacuum with zero 

vacuum energy -- that too has problems, such as fifth force constraints, as we 
will see. 

[Witten 2008] 
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2. Λ from a self-tuning universe [Feng et al 2001].

Λ relaxes through nucleation of branes coupled to gauge potential, the 
particular branes depending on the compactification assumed. 

3. Relaxation of Λ [Kachru et al 2000, Arkani Hamad et al 2000, Burgess et al].

Relies on presence of extra dimension to remove the gravitational 
effect of the vacuum energy. 

3 brane solns in 5D eff theories leads to standard model vacuum 
energy warping the higher dimensional spacetime while preserving 

4D flatness with no cosm constant. Problems with this! 

4. Λ from the Cyclic Perspective [Steinhardt and Turok 2002, 2006].

Key feature, because many cycles and each cycle lasts a trillion years, 
universe today is much older than today’s Hubble time, so Λ has had long 

time to reduce to the observed value today. 
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5. Supersymmetric Large Extra Dims and Λ [Burgess et al, 2003-2013].
Solutions to 6D Supergravity

In more than 4D, the 4D vacuum energy can curve the extra dimensions 
instead of the observed 4 dimensions [Carroll and Guica; Aghababaie et al]

Proposal: Physics is 6D above 10-2 eV scale with supersymmetric bulk. 
We live in 4D brane with 2 extra dim.

Integrate out brane physics leads to large 4D vacuum energy, but it is 
localised in extra dimensions. 

Integrate out classical contributions in bulk and find tensions cancel 
between bulk and brane.

Static and time dependent solutions exist, most of them runaway with 
rapid growing or shrinking dimensions. 

Albrecht-Skiordis type quintessence evolution leads to late time 
acceleration and testable predictions. 

Recent developments with stable solutions and particular new relations 
between particles - over to Cliff ...
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Particle physics inspired models?
Pseudo-Goldstone Bosons -- approx sym φ --> φ + const. 

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (⇥) = �4(1 + cos(⇥/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy.



Evac = (10�3 eV)4 ⇥ maxion � 10�33 eV

ma =
�2

QCD

Fa
; Fa � decay constant
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Axions could be useful for strong CP problem, dark matter and dark 
energy.

Strong CP problem intro axion : 

PQ axion ruled out but invisible 
axion still allowed: 109 GeV � Fa � 1012 GeV

String theory has lots of antisymmetric tensor fields in 10d, hence 
many light axion candidates.

Can have  Fa ~ 1017-1018 GeV

Sun stability CDM constraint

Quintessential axion -- dark energy candidate [Kim & Nilles].

Requires Fa ~ 1018 GeV which can give:

Because axion is pseudoscalar -- mass is protected, hence avoids fifth 
force constraints -- over to Hans Peter Nilles ...



16

Slowly rolling scalar fields -- Quintessence

1. PE  KE

2. KE dom scalar field 
energy den.

3. Const field.

4. Attractor solution: 
almost const ratio KE/
PE.

5. PE dom.

Attractors make initial conditions less important 
Nunes

Peebles and Ratra; Wetterich; 
Ferreira and Joyce

Zlatev, Wang and Steinhardt

As of 14 Mar 2013, can really use this language !



17

Scaling for wide range of i.c.

Fine tuning: 

Mass: Fifth 
force !

EC and Nunes
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1. Chameleon fields [Khoury and Weltman (2003) …]

Key idea: in order to avoid fifth force type constraints on Quintessence 
models, have a situation where the mass of the field depends on the 
local matter density, so it is massive in high density regions and light 

(m~H) in low density regions (cosmological scales). 

2. Phantom fields [Caldwell (2002) …]

The data does not rule out w<-1. Can not accommodate in standard 
quintessence models but can by allowing negative kinetic energy for scalar 

field (amongst other approaches). 

3. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Advantage over 
Quintessence through solving the coincidence model? 

Long period of perfect tracking, followed by domination of dark 
energy triggered by transition to matter domination -- an epoch 

during which structures can form. Similar fine tuning to 
Quintessence -- found in DBI models for instance, Gallileons, ....



Ein eqn : Gµ⇥ = 8�GTµ⇥

General covariance : ⇥µGµ
⇥ = 0� ⇥µTµ

⇥ = 0

Tµ⇥ =
�

i

T (i)
µ⇥ ⇥ ⇤µTµ

⇥
(i) = �⇤µTµ

⇥
(j) is ok
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4. Interacting Dark Energy [Kodama & Sasaki (1985), Wetterich (1995), Amendola (2000) + 
others… ]

Idea: why not directly couple dark energy and dark matter?

Couple dark energy and dark matter fluid in form:

⇥µTµ
⇤

(⌅) =
�

2
3
⇥�(⇤)T�

�
(m)⇥⇤⇤

⇥µTµ
⇤

(m) = �
�

2
3
⇥�(⇤)T�

�
(m)⇥⇤⇤
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Ex: Including neutrinos -- 2 distinct DM families -- resolve coincidence 
problem [Amendola et al (2007)] 

Depending on the coupling, find that the neutrino mass grows at late 
times and this triggers a transition to almost static dark energy.

Trigger scale set by time when neutrinos become non-rel 

mν



⇥̈c +

�
2H � 2�

⇤̇

M

⇥
⇥̇c �

3
2
H2[(1 + 2�2)�c⇥c + �b⇥b] = 0
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Perturbations in Interacting Dark Energy Models [Baldi et al (2008), Tarrant et al 
(2010) ]

Perturb everything linearly : Matter fluid example

modified 
grav 

interaction 
extra 

friction 
vary DM 
particle 

mass 

Include in simulations of structure formation : GADGET [Springel (2005)]

Density decreases as coupling β increases

Halo mass function modified.

Halos remain well fit by NFW profile.

Density decreases compared to ΛCDM as coupling β 
increases.

Scale dep bias develops from fifth force acting between 
CDM particles. enhanced as go from linear to smaller non-

linear scales. 

Still early days -- but this is where I think there should 
be a great deal of development -- see Puchwein et al 

yesterday (1305.2418)
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Do we need Dark Energy ?
Buchert (2000), Kolb et al (2006), Wiltshire (2007), Hunt and Sarkar (2007), Garcia-Bellido and 

Haugbolle (2008), Moss et al (2010), Nadathur and Sarkar (2010) ... + many

Perhaps we dont need to fine tune a cosmological constant, what we see 
is a result of  living in an inhomogeneous universe.

Live in a void arising from inhomo flucn in early universe -- Gpc scale.
We live close to centre of large void where Hubble flow is 30% faster 

than global rate. Void size 2.5 Gpc in otherwise EdS univ on large scales.

Apparent accn arises from curved photon paths in open patch of universe.

Fine tuning - must be within 100Mpc of centre of void so that induced 
dipole moment in CMB not too large.  

CMB analysis of including higher multipoles suggest the standard LTB 
models used to describe the voids struggle to fit data, predicting low local 

Hubble rate, age problem and too little structure. [Moss et al (2010)] 
But if allow for features in primordial power spectrum of density 

fluctuations, for example breaks in it arising from multiple periods of 
inflation -- then can address many of the issues with the CMB peaks. 

[Nadathur and Sarkar (2010)]
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Should we be modifying gravity instead of looking for dark energy ? 

Has become a big industry but it 
turns out to be hard to do too much 
to General Relativity without falling 

foul of data.

 BBN occurred when the universe 
was about one minute old, about one 
billionth its current size. It fits well 
with GR and provides a test for it in 

the early universe.

Any alternative had better deliver 
the same successes not deviate too 
much at early times, but turn on at 

late times . 
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Any theory deviating from GR must do so at late times yet remain consistent 
with Solar System tests. Potential examples include:

• f(R), f(G) gravity -- coupled to higher curv terms, changes the dynamical 
equations for the spacetime metric. 

[Starobinski 1980, Carroll et al 2003, ...]• Modified source gravity -- gravity depends 
on nonlinear function of the energy.

•  Gravity based on the existence of extra 
dimensions -- DGP gravity 

We live on a brane in an infinite extra 
dimension. Gravity is stronger in the bulk, 

and therefore wants to stick close to the brane 
-- looks locally four-dimensional. 

Tightly constrained -- both from theory 
[ghosts] and observations 

•  Scalar-tensor theories including higher 
order scalar-tensor lagrangians -- recent 

examples being Gallileon models [Carroll]
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f (R) models [Lots and lots of people... ]

No Λ

Usually f (R) struggles to satisfy both solar system bounds on deviations 
from GR and late time acceleration. It brings in extra light degree of 

freedom --> fifth force constraints.

Ans: Make scalar dof massive in high density solar vicinity and hidden 
from solar system tests by chameleon mechanism.

Requires form for f (R) where mass of scalar is large and positive at high 
curvature. 

Has to look like a standard cosmological constant  
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Designer f (R) or f(G) models [Hu and Sawicki (2007), ...]

Construct a model to satisfy observational requirements:

1. Mimic LCDM at high z as suggested by CMB

2. Accelerate univ at low z

3. Include enough dof to allow for variety of low z phenomena

4. Include phenom of LCDM as limiting case.
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Bad news for chameleons [Barnaby, Burrage, Erickcek,Huang]A chameleon catastrophe

In f(R) and chameleon models dark energy is sourced by 
the trace of the energy momentum tensor of matter
The  scalar  gets  ‘kicked’  every  time  a  particle  species  

decouples
This leads to the production of very high energy particles

Barnaby, CB, Erickcek, Huang (To appear)

During radiation 
domination

2

FIG. 1: The kick function Σ = (ρ − 3P )/ρ vs Jordan-frame
temperature. We account for all SM particles. The disconti-
nuity at TJ = 170MeV corresponds to the QCD phase tran-
sition.

The potential V (φ) was designed to provide this
screening mechanism and does not originate from fun-
damental physics. While there have been attempts to
realize Eqs. (1,2) in string theory [26, 27], chameleon
gravity is usually treated as a low-energy EFT. Quan-
tum effects were ignored until recently [28]. We consider
a very different kind of quantum effect, related to particle
production in a time-dependent background.

Kicks–We assume that the Universe became radiation
dominated at a high temperature (T ∼> TeV), and at this
time, φ was a classical, homogeneous condensate with
M " φi ∼< MPl [16]. (If φi " M , then the force V ′

pushes φ to larger values.) Prior to BBN, φmin ∼< M ,
but Hubble friction prevents the chameleon from rolling
toward φmin while (ρ − 3P ) " ρ. This is problematic
because φmin " MPl today, and variations in φ can be
interpreted as variations in particle masses. To avoid
spoiling the success of BBN, the chameleon must reach
φ ∼< 0.1MPl/β before the temperature cools to a few MeV
[16]. Since φi is set by unknown physics in the very early
Universe, some mechanism to displace φ prior to BBN is
usually required to satisfy this constraint.

Fortunately, there is an effect that will “kick” φ to
smaller values [16, 29, 30]. The quantity Σ ≡ (ρ− 3P )/ρ
becomes temporarily non-zero when the radiation tem-
perature drops below the mass of a species X in thermal
equilibrium; at higher temperatures Σ is small because
PX ≈ ρX/3 and at lower temperatures it is small be-
cause ρX is Boltzmann suppressed. At this time, the last
term in Eq. (3) overcomes the Hubble friction, and φ rolls
toward φmin. In Fig. 1 we include all Standard Model
(SM) particles and plot Σ as a function of the Jordan-
frame temperature TJ ; the contributions from individual
particles merge into four distinct kicks [31, 32].

We solved Eq. (3) numerically for a homogeneous
chameleon with a wide range of initial values. We find
that the kicks generically drive φ to φ ∼< M , where V (φ)
becomes important. At this moment, the chameleon’s
velocity φ̇ is much larger than M2, the scale that con-
trols V (φ). This huge velocity causes the chameleon mass
to vary rapidly, and then particle production spoils the
classical approximation.

Chameleon Velocities– Before discussing particle
production, we must understand why the kicks drive φ
toward the potential barrier at φ ∼< M with a large ve-
locity. If φi & φmin, then we can neglect the V ′(φ) term
in Eq. (3). Since V (φ) " ρ and Σ " 1, the homogeneous
dynamics are well approximated by

ϕ′′ + ϕ′
[

1− (ϕ′)2/6
]

= −3
[

1− (ϕ′)2/6
]

βΣ(TJ), (4)

where ϕ ≡ φ/MPl, ϕ′ ≡ ∂pϕ, and p ≡ ln(a/ai). The
Jordan-frame temperature (ρJ ∝ T 4

J ) also depends on ϕ:

TJ =

[

g∗S(TJ,i)

g∗S(TJ)

]1/3

TJ,ie
β(ϕi−ϕ)e−p, (5)

where g∗S(TJ) is the entropy density divided by
(2π2/45)T 3

J , and TJ,i and ϕi are initial conditions.
These equations admit a novel surfing solution, char-

acterized by a constant Jordan-frame temperature:

ϕ′
s(p) = −β−1 ⇔ Ts ≡ TJ [ϕs(p)] = const. (6)

This ansatz solves Eq. (4) if Σ(Ts) = 1/(3β2). If only
the SM contributes to Σ, then surfing solutions exist for
β > 1.82. Numerically solving Eq. (3) with β > 1.82 con-
firms that the surfing solution is an attractor if φ̇2 " ρ
prior to the kicks. Previous studies [16, 17] missed the
surfing solution because they neglected the ϕ dependence
in Eq. (5).
Chameleons with β > 1.82 can “surf” the kick function

from an arbitrarily large initial condition; ϕ′(p) = −β−1

until ϕ ) φmin/MPl, where V ′ becomes important and
Eq. (4) breaks down. If β ≥ 3.07, then Ts > 61 GeV and
the chameleon quickly settles into the surfing solution.
If 1.82 < β < 3.06, the chameleon will not surf the first
kick, but it can surf a subsequent kick if earlier kicks leave
φ & φmin. Consequently, any chameleon with β > 1.82
will reach φmin, regardless of φi.
If the chameleon cannot surf, then the kicks displace

φ by a finite amount [32]. However, any chameleon
with β > 0.42 will reach φmin during the last kick if
ϕ < (0.1/β) prior to that kick, as required by BBN.
Chameleons with β < 0.42 can avoid colliding with
the potential wall, but only if their initial condition is
finely tuned so that all the kicks from particles with
masses > MeV leave 0.56β < ϕ < 0.1/β. For f(R)
gravity, β = 1/

√
6, and impact can only be avoided if

0.23 < ϕ < 0.24 prior to BBN.
Having established that the kicks almost always

take the chameleon to φmin, we now consider the
chameleon’s velocity when it impacts its bare potential:

φ̇ ≈ −0.6g1/2∗ ϕ′
[

3− 0.5(ϕ′)2
]−1/2

T 2
J . Typical velocities

are controlled by TJ , evaluated when φ = φmin. Quanti-
tatively TJ ∼> 0.5MeV at this time and |ϕ′| > 0.02, unless
a kick deposits φ exactly at φmin, so |φ̇|1/2 > 0.07MeV &
M in all but a few finely-tuned cases. Moreover, |φ̇| is
usually much larger; a surfing chameleon with β ≥ 3.07
has |φ̇|1/2 > 63GeV at impact.

Net effect - breakdown in calculability prior to BBN due to same 
matter couplings required to avoid fifth force constraints
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Development of a dark energy direct detection 
experiment

Coherent waves in Bose-Einstein condensates can be 
used for interferometry

Credit: Centre for Cold Matter, Imperial

Dark Energy Direct Detection Experiment [Burrage, EC, Hinds]

Development of a dark energy direct detection 
experiment

Interference of waves in condensates at different heights 
has already detected gravitational effects

(Dimopoulos, Geraci 2003. Baumgärtner et al. 2010)

Interference of waves in condensates held in different 
environments can be used to directly detect screening 

mechanisms

Working together with the Center for Cold Matter at 
Imperial College to develop this experiment
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1. We need to define properly theoretically predicted observables, or 
determine optimum ways to parameterise consistency tests (i.e. how 

should we parameterise w(z)?)

2. Need to start including dynamical dark energy, interacting dark 
matter-dark energy and modified gravity models in large scale 

simulations -[see Puchwein, Baldi and Springel]. 

3. Include the gastrophysics + star formation especially when 
considering baryonic effects in the non-linear regimes. 

4. On the theoretical side, develop models that go beyond illustrative 
toy models. Extend Quintessential Axion models. Are there examples 
of actual Landscape predictions? De Sitter vaccua in string theory is 

non trivial -[see Burgess et al].

5. Recently massive gravity and galileon models have been developed 
which have been shown to be free of ghosts. What are their self-

acceleration properties? 

What should we do to help determine the nature of DE ?
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6. Will we be able to reconstruct the underlying Quintessence potential 
from observation? 

7. Never mind evidence of evolution, will we ever be able to determine 
whether w≠-1 ?

8. Look for alternatives, perhaps we can shield the cosmological 
constant from affecting the dynamics through self tuning-- The Fab 

Four 

9. Given the complexity (baroque nature ?) of some of the models 
compared to that of say Λ, we should be using Bayesian model 

selection criterion to help determine the relevance of any one model. 

Many more things to be done on a phenomenological and theoretical 
side. 

Things are getting very exciting with the Dark Energy Survey 
beginning to take data and proposed longer term Euclid mission. 
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Self tuning - with the Fab Four 

In GR the vacuum energy gravitates, and the theoretical estimate 
suggests that it gravitates too much. 

Basic idea is to use self tuning to prevent the vacuum energy 
gravitating at all. 

The cosmological constant is there all the time but is being dealt with 
by the evolving scalar field.

with Charmousis, Padilla and Saffin

PRL 108 (2012) 051101; PRD 85 (2012) 104040

with Padilla and Saffin

JCAP 1212 (2012) 026
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Horndeski’s theory: [G.W. Horndeski, Int. Jour. Theor. Phys. 10 (1974) 
363-384

Most general scalar-tensor theory with second order field equations:

�1, �3, �8, �9 ��Four indep func of⇤ and⇥

W can be set to zero and F can be derived from κ’s. 

Equivalent to Deffayet et al, PRD80 (2009) 064015 

(see also Kobayashi et al 1105.5723 [hep-th])
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The action which leads to self tuning solutions can be rewritten in a 
more natural way in which we see how the scalar fields couple directly 

to various curvature invariants: 

where

and

In other words it can be seen to reside in terms of the four arbitrary 
potential functions of ϕ coupled to the curvature terms. 

Covers most scalar field related modified gravity models studied to date.
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Assume no derivative couplings to matter to avoid 
violation of Equivalence Principle.

Can assume matter only couples to metric.

Begin the Cosmology
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Friedmann equation:

At most cubic in Hubble parameter H

µ3H
3 + µ2H

2 + µ1H + µ0 = �m

Scalar eom:

Linear in both �̈ and ä.



< ⇥m >vac= ⇥�, H2 = � �

a2
, ⇤ = ⇤�(t)
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1. Vacuum solution is always Minkowski whatever the vacuum 
energy

2. Solution remains Minkowski even after a phase transition where 
the vacuum energy changes instantaneously.

In other words the vacuum energy does not gravitate at all because 
of the influence of the evolving scalar field and curvature.

piecewise constant 
but discontinuous 

at transition

``On shell in a’’ 
always satisfied

continuous 
everywhere and 

not constant

Self tuning in Horndeski.



�̇

ä
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Scalar field eqn of motion should be trivial ``on-shell-in-a’’

The scalar is completely determined by the vacuum 
Friedmann equation. 

In this self tuning vacuum:

1. the matter tells the scalar how to move - this requires that 
the ``on-shell-in-a’’ gravity equation be dependent on 

2. the scalar tells the spacetime not to curve, but crucially 
only in the vacuum - the scalar equation should not be 

independent of 



Hjohn +Hpaul +Hgeorge +Hringo = �[�� + �matter]
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Some equations for Fab Four Cosmology:



39where:

Note each 
term 

vanishes 
identically 
when ∆ = 0 
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fab four cosmology
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q = �aä

ȧ2

“matter”“radiation”

a ⇠ tp ⇠ t�1/h

q = �p(p� 1)

p2
= �(1 + h)

Thursday, 28 February 2013 Borrowed from Paul’s seminar
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Stability?  see Kobayashi et al: 1105.5723; De Felice et al: 1108.4242

Tensor pertns:  

Scalar pertns:  

Find stable  FT>0, GT>0,  FS>0, GS>0 for say:

finding Stable cases

10−8 10−6 10−4 10−2 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a(t)/a(tf)

q(
t)

Hj +Hp +Hg +Hr + ⇢⇤ = 0

Hj +Hp +Hg +Hr = 0 �! H#|fp ⇠ an̂
�! H#|fp ⇠ a0

•look for models with            , and positive    at fixed point
•reinstate      , corrections go like 

n̂⇢⇤ = 0
⇢⇤a

�n̂⇢⇤

Thursday, 28 February 2013

Also true for radiation and inflation ... 

But can we put them together somehow ?
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Possible to have a self tuning `classical’ solution in which the system adjusts itself to 
the Minkowski vacuum irrespective of the magnitude of the cosmological constant 
and whether it changes. It relies on breaking the assumption of Poincare invariance 
demanded by Weinberg in his original no-go theorem. In particular we have to have 

the scalar field evolving in time.  

Remains to be seen whether we can satisfy solar system tests and obtain realistic 
cosmological solutions. 

The role of quantum corrections remains to be evaluated (although initial 
calculaations suggest they can be controlled). They could spoil the party, although 

we note the crucial role played in the geometrical structure of the model. 

There is always the question of stability of the solutions

Gregory Hormdeski left physics in 1981 having obtained a faculty position at 
Waterloo, Canada. He was on leave in Amsterdam and went to a Van Gogh 

exhibition.

His love of art was too strong and the inspiration he took from Van Gogh 
overpowering. He now works from his studio in Santa Fe. 
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Summary
•Data currently consistent with a pure cosmological constant -- but why that 
value? 

•Why is the universe inflating today? 

•Is w = - 1, the cosmological constant ? If not, then what value has it?

•Is w(z) -- dynamical. How should this be parameterized when considering 
surveys like DES and Euclid? 

•New Gravitational Physics  -- perhaps modifying Einstein equations on 
large scales? Key differences arising in perturbations. 

•Perhaps we will only be able to determine it from anthropic arguments and 
not from fundamental theory.

•or -- we can avoid the need for a lambda term all together? 


