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Aim of the talk

Discuss theoretical challenges for building models of inflation after Planck results

Current situation:

The spectrum of curvature fluctuations is almost (but not exactly) scale invariant,
and is characterized to a high degree by a Gaussian statistics.

No hints of contributions isocurvature fluctuations, nor of gravitational waves.
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Do naturalness arguments help to decide”
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From the point of view of high energy physics, inflation is a very interesting process

of inflation

> It occurs at high energy scales: opportunity to probe new physics

> Delicate process: sensitive to couplings among inflaton and other fields and

to Planck-suppressed corrections to the potential.

> It is not an isolated phenomenon. Inflaton energy gets transferred to SM

degrees of freedom at the end of inflation: reheating



Inflation is a delicate process

Inflation is very sensitive to interactions of inflaton with itself
and with other fields

Technically, this manifests in the so called n-problem

. H
T T
Slow-roll parameters
B €
= e H

The condition to have inflation is € < 1. In order to have a sufficiently prolonged period of inflation, n < 1.

These parameters can be expressed in terms of the inflaton potential as

M2 [V 2 V"
€y = 2P (V) < 0(1) , Ny = M}%V < O(l)
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Inflation is very sensitive to interactions of inflaton with itself
and with other fields

The condition to have inflation is € < 1. In order to have a sufficiently prolonged period of inflation, n < 1.

Inflation is sensitive to high dimension, Planck suppressed contributions

O Oy ¢ Vo ¢*

Indeed, we expect AV = —- = = ¢y An ~ 1
Mg T M UM — {

n parameter is large: it is very hard to maintain inflation for long time

Additional challenges for large field models

e Since the inflaton does super-Planckian excursions A¢ > Mp;, we must worry
about high dimension contributions to the potential ~ ¢” /M]@fl

e These models are able to produce large tensor-to-scalar ratio: Lyth bound.



A guide for model building ?

These naturalness issues shouldn’t be ignored, and may offer a guide for theoretical
model building.

Similar to hierarchy problem of particle physics, that motivates going beyond SM

> Some sort of interesting (new?) physics is controlling inflationary potential?

Ideas available on the theory market to address these tuning issues:

Flatness of inflationary potential is due to:

e Accident

e Large self-interactions

Inflaton dynamics is very different with respect to the simplest scenario

e Symmetries

The hope is that, along the way, we find interesting ideas to further explore ....



Accident

Conceptually simple idea

Inflection point inflation: different contributions to the inflaton potential acci-
dentally cancel, leaving a potential sufficiently flat to sustain enough inflation.
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In order to test this idea, we need to know high energy origin of inflation
model to concretely calculate corrections to inflationary potential

String inflation realizes inflation within a fundamental theory of nature providing
settings to test this possibility.

e String theory contains plenty of 1ight scalars that can drive inflation



D-brane inflation:

D3-brane embedded in a warped throat (KS space-time, throat with fluxes turned on)

The position of the moving D3 brane corresponds to the rolling inflaton

- The brane feels a force associated with presence of anti-brane as well as fluxes (KKLMMT)

- Inflaton feels the influence of additional light scalars, that have to be fixed by adding wrapped D7

D3
° > T

warped throat

Burgess et al, Baumann, Klebanov et al, + others have studied in detail this system
showing that, with tunings of order of percent, sufficient inflation can be realized.

’ } Delicate inflation

5 2 5 3/2
V() = Vo(¢) + M H; (M—> — ag/o (M—>



D-brane inflation:

D3-brane embedded in a warped throat (KS space-time, throat with fluxes turned on)

Many variations on this idea can be done:

> Warped geometries have been very well studied by string theorists to understand properties of QCD
in terms of gravity duals (AdS/CFT)

> With Chen, Gong, Koyama we realized a multi-field version (hybrid inflation) of the original model
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Many variations on this idea can be done:

> Warped geometries have been very well studied by string theorists to understand properties of QCD
in terms of gravity duals (AdS/CFT)

> With Chen, Gong, Koyama we realized a multi-field version (hybrid inflation) of the original model

= Use a set-up where angular directions become tachyonic towards the IR

What happens when inflation ends?



D-brane inflation:

D3-brane embedded in a warped throat (KS space-time, throat with fluxes turned on)

Many variations on this idea can be done:

> Warped geometries have been very well studied by string theorists to understand properties of QCD
in terms of gravity duals (AdS/CFT)

> With Edmenger, Halter, Nunez, we realized inflation in a background with D5 used to realize walking
technicolor

— Strongly coupled dynamics in QFT = Exact geometry in gravity (cosmology) side!
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Many variations on this idea can be done:

> Warped geometries have been very well studied by string theorists to understand properties of QCD
in terms of gravity duals (AdS/CFT)
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Is there particle production during inflation when D3 meet D5 branes?

— Strong coupling in cosmology = Weakly coupled, computable setting in QFT side?



D-brane inflation:

e String brane inflation can realize inflection point inflation

= Exploits and applies the most modern string theory techniques for cosmology

Very interesting to exploit connections between AdS/CFT tools and cosmology

e Skenderis et al attempt to use AdS/CFT to analytically calculate dynamics of cosmological fluctua-
tions in strongly coupled scenarios

New tools to study cosmological regimes that are difficult to analyze by analytical methods



D-brane inflation:

e String brane inflation can realize inflection point inflation

= Exploits and applies the most modern string theory techniques for cosmology

Very interesting to exploit connections between AdS/CFT tools and cosmology

e Skenderis et al attempt to use AdS/CFT to analytically calculate dynamics of cosmological fluctua-
tions in strongly coupled scenarios

New tools to study cosmological regimes that are difficult to analyze by analytical methods

Predictions:

e Consistent with single field inflation, no tensor modes.

e But controllable complications can be added, that leads to features to power-
spectrum or non-G
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V(p) = m? ¢? No matter how large the inflaton mass is!

> Embedding in stringy warped throat problematic for backreaction issues

Inflation prefers to occur in a region of the throat (towards the IR) in which it is not

possible to neglect influence of KK modes. Hence, SUGRA approximation breaks down

Solution (?7): consider multiple field inflation, D-branes moving in multiple throats.

- Couplings between different branes might be enough to avoid the previous problem.
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DBI inflation can be motivated from string theory: a high energy completion that allows to analyze
naturalness issues in this context.
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V(p) = m? ¢? No matter how large the inflaton mass is!

> Embedding in stringy warped throat problematic for backreaction issues
> This scenario produces too large non-G: fi} ~ 1/c2: tension with bounds on tensor-scalar ratio
Solution (?7): consider multiple field inflation, D-branes moving in multiple throats.

- Dynamics of cosmological perturbations change, due to conversion of isocurvature into
adiabatic fluctuations



Large derivative self-interactions

e Both local and equilateral non-G can be generated.

e Equilateral nonG produced at horizon exit, that must then be evolved at su-
perhorizon scales; at the same time local non-G is produced



Large derivative self-interactions
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e With Emery and Wands we studied in detail a set-up in which large (but
tunable) non-G of both shapes can be produced depending on initial conditions
and choice of model parameters
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Large derivative self-interactions

DBI, Hordenski, Galileon, etc etc

e Very nice theoretical idea to address naturalness issues

e It exploits large derivative self-interactions

— General prediction: large non-Gaussianity are produced

— But this conclusion can be avoided: non-Gaussianities might result of a
size that’s just below Planck sensitivity



Large derivative self-interactions

DBI, Hordenski, Galileon, etc etc

e Very nice theoretical idea to address naturalness issues

e It exploits large derivative self-interactions

— General prediction: large non-Gaussianity are produced

— But this conclusion can be avoided: non-Gaussianities might result of a
size that’s just below Planck sensitivity

e Maybe correct, but sounds very strange....

Analogy: Technicolor scenario for explaining EWSB in particle physics models
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> Shift symmetry This looks good and simple: Natural inflation

The inflaton is an axion a — a + const

Symmetry prevents mass term for the inflaton field at each order in perturbations.

Broken by non-perturbative effects that makes the symmetry discrete (¢ = a f):
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Good thing: not only addresses naturalness issue, it also allows for superplanckian excursions:

if f > Mp; then Ao > Mpy

Question: Can you find a UV completion?
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> Shift symmetry This looks good and simple: Natural inflation

Problem turns out to be difficult to obtain consistent models with f > Mp; in string theory
(geometrical obstructions)

— N-inflation (Kim et al, Dimopolous et al)

— Axion monodromy inflation (Silverstein et al)

String theory contains many axions (p-form gauge potentials integrated over p-cycles).

you acquire a potential by wrapping D-branes on the cycles: again you exploit DBI action

s D5-brane

1 4 B-flux
SpBI = P / d'x /=g VI + D2

At large values of b (the axion) you get linear potential.

Problems?

- The mechanism works for NS5 branes: delicate issues of backreaction...

- What about reheating?” how does the inflaton couple to matter without spoiling shift symmetry?
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Can inflation be protected by some symmetry, that prevents corrections to inflaton mass?

Inflaton: Kéahler (closed) modulus in IIB string theory

B 4W0anAn 3V 2/3 c\4/3 3V 23 c\4/3
Vi="V- V2 (4)\) (Tn> CXP | —ln E (Tn>

Idea:
Break the no-scale symmetry in a controllable way: Large Volume scenario (Conlon, Quevedo, + others)
- Contributions to the potential are expressed as a perturbative expansion in inverse powers of a very

large quantity V: the volume of the extra-dimensional space

- A model of inflation can be built. Inflaton is Kahler modulus in IIB: the last light modulus rolling
towards its minimum Dangerous corrections to inflationary potential are tamed by 1/V coeffs



Curvaton in LV scenarios

In this scenario modulation mechanisms can be implemented

— There are other light moduli associated with features of the geometry: they do not directly

couple to the inflaton field
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Computing non-Gaussianity, we find non-G of local shape with

loc

NE = (Planck value fi = 2.7+ 5.8)




