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   Introduction: 

   The present universe according to observations:  

   

    Two big problems to address: 

    

   1) Dark Matter (DM) 

       What is the nature of DM? 

       How was it produced?  

 

   2) Baryon Asymmetry of Universe (BAU) 

       How was it generated? 

                

   Profound consequences for:  

   Particle Physics (beyond the SM) 

   Cosmology (thermal history)                              

    

Dark Energy 
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Suitable DM candidate:  

Weakly Interacting Massive Particle (WIMP) 

 

Well motivated: 

1) Typical in physics beyond the SM (LSP, LKP, …)  

 

2) WIMP miracle (?) 

 

WIMPs are focus of current worldwide experimental DM searches: 

1) Direct detection. 

 

2) Indirect detection. 

 

3) Collider production.  

 

 

In this talk, we will not discuss non-WIMP candidates 

(sterile neutrino, axion, axino, gravitino, …)                                     



 

  

The best experimental probes of the early universe: 

 

1) CMB, t ~ 400,000 yr 

 

2)  BBN,  t ~ 1 sec  

 

Confirm thermal equilibrium condition of relevant interactions at  

the onset of recombination & nucleosynthesis. 

 

 

DM relic density can in principle be measured at colliders. 

 

 

Thermal equilibrium at  t ~         sec   

or 

Non-thermal mechanisms 

 

DM as the strongest probe of the thermal history of the universe   
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Arnowitt, Dutta, Gurrola, Kamon, Krislock, Toback  PRL 100, 231802 (2008)   
    



 

 

The obvious (and most reliable) piece of information is the DM  

relic abundance. 

 

Other pieces of information may be obtained if: 

 

DM annihilation affects neutrino decoupling   

 

DM annihilation affects recombination and/or reiniozation  

 

 

Important to note: 

 

Very special models 

 

Assumptions needed to connect vastly different time scales    
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        Constraining Special Models with PLANCK: 
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Example: Light WIMP 
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WMAP9+SPT11+H+BAO 

95% CL   

Perfect energy deposition   

Effective energy deposition   

Lopez-Honorez, Mena, Palomares-Ruiz, Vincent   arXiv:1303.5094   
    

Example: Light leptophilic WIMP 

 

 

Assumption: S-wave dominates annihilation 
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“The Early Universe” Kolb & Turner 

 

  

Thermal freeze-out sets the WIMP relic abundance: 

 

 

 

 

 

 

 

Assuming: 

 

 

 

  

Correct abundance for:     
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Thermal Dark Matter: 



  

Thermal scenario is attractive: 

 

1) Independent from prior thermal history. 

 

2)  Predictive.  

 

 

But, not very generic model-wise. 

 

 

For example, consider MSSM. 

 

A simplified version:  

SUGRA with 19 parameters. 

 

 

 

WIMP miracle needs real miracle!  

Baer, Box, Summy  JHEP 1010, 023 (2010) 



 

   Higgsino DM 

    Higgsino is the LSP when other superparticles are very heavy   

 

    Example: Natural SUSY 

 

 

 

    3rd generation squarks & EW gauginos  

    Gluinos 

    1st and 2nd generation squarks & sleptons 

      

    

     

    

    Sub-TeV Higgsino DM thermally underproduced  

 Baer, Barger, Huang, Tata   JHEP 1205, 109 (2012) 

 Papucci, Ruderman, Weiler   JHEP 1209, 035 (2012) 
 Hall, Pinner, Ruderman   JHEP 1201, 134 (2012) 

TeV10
TeV43~ 

)(~ TeVO

GeV200150~ 

TeVmscm
m

v EW
fann 3103~ 1326

2

2

 










 

   Light DM 

    Hint for                      DM from some direct detection experiments   
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Light DM thermally overproduced  

 



 

 

Thermal WIMP still a possibility.  

 

Even in the simplest scenarios, like mSUGRA, there are allowed 

pockets of parameter space.   

 

 

However, current data and emerging hints motivate scenarios of 

non-thermal DM as a serious alternative.    

 

 

Eventually, after a model is discovered and then established at 

colliders, we will be able to calculate               . 

 

 

Indirect search bounds should also be interpreted with care. 

 

 

It is important to keep open and study different scenarios.      

 

                                              

Cohen, Walker   arXiv:1305.2914 
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Indirect Detection  
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Probing thermal history once a model is established  
    



 

 

Thermal freeze-out does not yield the correct density if: 

 

 

 

 

 

 

Thermal underproduction  

Example: Sub-TeV Higgsino DM 

 

 

 

 

 

Thermal overproduction 

Example: Bino DM in bulk region, Light DM                                           
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     Non-thermal Dark Matter: 



 

   Scenario:  

    Late decay of a scalar     with mass        that reheats the universe 

    to a temperature                            .  

     

    Dilution factor due to entropy release is                              . 

  

     

     

     

 

     

               

               Branching ratio for producing R-parity odd particles 
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   Thermal underproduction (e.g., sub-TeV Higgsino DM): 

 

 

     

     

    1) “Annihilation” scenario requires: 

     

          

 

 

     

    2) “Branching” scenario requires: 
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   Thermal overproduction (e.g., Bino DM in bulk region, Light DM): 

 

 

     

     

    “Annihilation” scenario does not work: 

     

 

    

     

     

    “Branching” scenario the only option, requires: 
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   Non-thermal scenario can also help with        .  

    Example: (quasi)Dirac neutrinos with gauge interactions for 

     

    A simple and well-motivated model includes a gauged             .      

                                               

    LEP & Tevatron set bounds on          mass (and       interactions). 

     

      

      

    In a thermal scenario this results in                    .   

 

    However, late decay with                                 leads to: 
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Carena, Daleo, Dobrescu, Tait   PRD 70, 093009 (2004) 
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   Moduli fields are natural candidate for     . 

    Commonly arise in SUSY and string-inspired models.  

     

 

 

    Moduli dynamics in the early universe: 

    1) Displaced during inflation  

     

    2) Starts oscillating when               

     

    3) Decays and reheats the universe to  

     

    BBN requires 
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     Non-thermal Dark Matter from Moduli Decay: 



     Example: Higgsino DM via “Annihilation” scenario 

      

 

    Obtaining the correct relic density requires: 

     

          

      

 

     Higgsinos annihilate mainly into W  final state, S-wave process: 

      

      

 

                          is subject to bounds from indirect searches: 

       

     Strongest bounds provided by Fermi. 
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 Geringer-Sameth, Koushiappas   PRL 107, 241303 (2011)  

 

  

                 Fermi constraints on                from dwarf spheroidals: 
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   These bounds together with                        require that: 

      

      

     Required modulus mass: 

 

      

                                in models with non-perturbative schemes of   

     moduli stabilization                             : 

      

        

                                     Gravitinos escape very tight BBN bounds 

      

  

     Explicit realization: Non-thermal Higgsino DM in mirage mediation                                
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  Kawasaki, Kohri, Moroi, Yotsuyanagi   PRD 78, 065011 (2008) 

 R.A., Dutta, Sinha   PRD 86, 095016 (2012) 



 

    “Annihilation” scenario does not work if:  

      

     indirect searches result in more stringent bounds                        , 

     or 

     models with thermal overproduction. 

 

     In these case, the “Branching” scenario will be the only option:   

                                

      

      

                       

                 

    If                          , the correct abundance is obtained for: 
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   Constraints and Challenges: 

   1) Gravitino production must be suppressed: 

     

       

     

                     is the main source of gravitino production. 

     

    Helicity-1/2 gravitinos pose the main threat. 

 

     

     

 

        

                                   or kinematic blocking required. 
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   Dine, Kitano, Morrise, Shirman   PRD 73, 123518 (2006) 
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   2) The relic density in the “Branching” scenario must be just right: 

 

    

 

 

 

    

 

    

 

    

    

                         suppressing R-parity odd particle production            

 

                         suppressing modulus decay 
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  Typically, the main decay mode is to gauge/Higgs bosons. 

 

  2-body decays to gauginos may be suppressed.     

   

 

  Decay to Higgsinos can also be suppressed. 

   

   

   

  However, 3-body decays produce gauginos:                          . 

   

  

  Suppressing modulus decay to particles with gauge charges 

  and/or 

  Suppressing its total decay rate  

    

Moroi, Randall   NPB 570,  455 (2000) 

3103~ Br
 R.A., Dutta, Sinha   PRD 83, 083502 (2011) 

Cicoli, Burgess, Quevedo   JHEP 1110, 119 (2011) 
Cicoli, Mazumdar   JCAP 1009, 025 (2010) 
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   3) Generating baryon asymmetry: 

 

    

 

 

   For moduli: 

 

    

 

 

       decay washes out any pre-existing, even          , asymmetry. 

 

   BAU must be produced after the decay, hence post-sphaleron  

   Non-thermal baryogenesis    
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 R.A., Dutta, Sinha   PRD 81, 053538 (2010) 



 

   The simplest model based on KKLT scenario not quite successful: 

     

     

     

     

     

    Modifications to       in order to suppress          . 

 

    Three-body decays yield                           . 

    Suppressed modulus decay               to save “Branching” scenario. 

 

    Possible solution in Large Volume Compactification (LVC) models: 
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   Non-thermal DM from Visible Sector Scalar: 

    Overproduction of DM may be solved if       is a visible sector field. 

      

 

    Ensured by       belonging to the visible sector       

                         

                       

    Achieved by proper charge assignments, interactions, kinematics        

     

    Example:      an R-parity even scalar coupled to colored fields.                                             

     

     

    1) Decay to gravitinos gravitationally suppressed. 

    2) Decay to      suppressed by loop and/or phase space factors.         
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R.A., Dutta, Sinha  PRD 83, 083502 (2011) 

“Cladogenesis”: 
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R.A., Dutta, Sinha   PRD 87, 075024 (2013) 



 
 

• DM as strongest probe of thermal history, after discovery.   

 

• CMB sets relic density, other limits rely on assumption/models.  

 

• WIMP miracle is attractive, how seriously should we take it?      

 

• Late decay scenarios motivated, observational consequences? 

 

• Moduli decay natural candidate, embedding in explicit models? 

 

• Decay may overproduce DM, challenge for model building? 

 

• Visible sector decay can help, building realistic models? 

 

• Apparent baryon-DM coincidence, motivation for light DM? 

 

• Complementarity of experiments, multi-component DM etc?  

Outlook: 


