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Plan	
  of	
  the	
  Discussion	
  

•  Importance	
  of	
  Stringy	
  studies	
  of	
  SUSY	
  Breaking	
  
•  Gravity	
  vs	
  Gauge	
  vs	
  Anomaly	
  vs	
  ...	
  mediaOon	
  
•  General	
  Moduli	
  MediaOon	
  
•  Status	
  of	
  Moduli	
  StabilisaOon	
  
•  Constraints	
  from	
  Cosmology	
  
•  HeteroOc	
  vs	
  IIB	
  vs	
  F-­‐theory	
  vs	
  M-­‐theory	
  vs	
  ....	
  
Scenarios	
  

•  Concrete	
  String	
  Inspired	
  Scenarios	
  



Importance	
  of	
  Stringy	
  SUSY	
  

•  UV	
  compleOon	
  of	
  low-­‐energy	
  effects.	
  
	
  
•  Concrete	
  case	
  where	
  UV	
  effects	
  relevant	
  	
  
	
  	
  	
  (gravity+anomaly	
  mediaOon	
  but	
  also	
  gauge	
  mediaOon)	
  
	
  
•  PotenOal	
  to	
  determine	
  dynamically	
  the	
  relevant	
  
scales	
  MGUT	
  and	
  MSUSY.	
  

•  Explore	
  fundamental	
  SUSY	
  and	
  mediaOon	
  
mechanisms.	
  



Key:	
  Moduli	
  StabilisaOon	
  (MS)	
  

•  Relevant	
  Physical	
  Scales	
  (in	
  Planck	
  units)	
  

•  Note:	
  in	
  MSSM	
  MGUT=10-­‐3=1016GeV,	
  Mso_=	
  1TeV	
  
are	
  put	
  in	
  by	
  hand,	
  in	
  string	
  theory	
  should	
  be	
  
output.	
  

MGUT	
   MSUSY	
   Mso_	
   MEW	
   Mcc
4=Λ	
  

10-­‐3	
   >10-­‐15	
   >10-­‐15	
   10-­‐15	
   10-­‐120	
  



MODULI   STABILISATION 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 

+ String Dilaton: S 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 



Warning	
  on	
  Λ	
  

•  In	
  MSSM:	
  Leave	
  the	
  cc	
  problem	
  to	
  some	
  ‘other	
  
mechanism’.	
  Weakest	
  point	
  of	
  MSSM!	
  

•  In	
  String	
  Theory	
  (even	
  worst)	
  
*  Λ	
  is	
  an	
  outcome	
  
*  Cannot	
  rely	
  on	
  ‘other	
  mechanism’	
  
*  If	
  for	
  a	
  scenario	
  there	
  is	
  an	
  ‘yet	
  unknown	
  
mechanism’,	
  it	
  most	
  probably	
  select	
  very	
  
ungeneric	
  models	
  

*  For	
  IIB	
  there	
  is	
  a	
  mechanism:	
  The	
  Landscape.	
  
	
  



The	
  Landscape	
  

•  Good:	
  It	
  allows	
  	
  for	
  the	
  first	
  Ome	
  to	
  trust	
  calculaOons	
  
for	
  low-­‐energy	
  SUSY	
  breaking.	
  

	
  
•  Bad:	
  	
  missed	
  opportunity	
  to	
  have	
  new	
  physics	
  at	
  low	
  
energies	
  from	
  small	
  Λ.	
  

	
  

•  Ugly:	
  It	
  allows	
  	
  not	
  to	
  use	
  SUSY	
  to	
  address	
  the	
  
hierarchy	
  problem	
  (Split	
  SUSY,	
  High-­‐energy	
  SUSY)	
  



Cosmological	
  Constraints	
  

•  Cosmological	
  Moduli	
  Problem	
  (CMP)	
  
	
  	
  	
  	
  	
  MLMP	
  >	
  10	
  Tev	
  or	
  a	
  2nd	
  stage	
  of	
  inflaOon?	
  
	
  
•  GraviOno	
  (or	
  graviOno	
  induced	
  CMP)	
  

•  OvershooOng	
  (a_er	
  inflaOon,	
  large	
  reheaOng	
  T,...)	
  

•  Dark	
  RadiaOon	
  (Neff	
  ≥	
  3.04)	
  

	
  
	
  	
  	
  	
  



General	
  SUSY	
  Scenarios	
  

•  Moduli	
  StabilisaOon	
  with	
  SUSY,	
  	
  <FM>≠0	
  
	
  	
  	
  	
  Moduli	
  (gravity)	
  mediaOon:	
  Mso_≈	
  M3/2	
  

	
  	
  	
  	
  	
  Problems:	
  flavour,	
  CMP,	
  ...	
  

•  Moduli	
  StabilisaOon	
  with	
  SUSY,	
  	
  <FM>=0	
  
	
  	
  	
  	
  Two	
  steps,	
  suitable	
  for	
  gauge	
  mediaOon	
  
	
  	
  	
  	
  	
  Problems:	
  μ-­‐problem,	
  light	
  graviOno	
  and	
  moduli	
  (CMP),	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  complicated	
  in	
  string	
  theory,...(no	
  concrete	
  realistaion	
  )	
  



EffecOve	
  Field	
  Theory	
  

Let us review the simplest argument of [8]. The notation used here will be more fully

explained in section 3. We suppose the Standard Model is supported on a small cycle τs

within a large bulk τb. This geometry is that encountered in models of branes at (resolved)

singularities or the large volume models which will be reviewed in section 3. In this case

locality implies the physical Yukawa couplings are determined only by the local geometry

and are independent of the overall volume. As K̂ = −2 lnV, for this to apply in (2.9) we

must have

K̃α ∼
kαβ̄(φ, τs)

V2/3
, (2.10)

where φ are complex structure moduli. Expanding kαβ̄(φ, τs) in a power series in τs, we

can write the resulting metric as

K̃αβ̄ =
τλ
s

V2/3
kαβ̄(φ), (2.11)

This expression holds in the limit of dilute fluxes and large cycle volume τs and will receive

corrections subleading in τs. For the minimal model in which all branes wrap the same

cycle, it was shown in [8] that λ = 1/3. For other cases λ may take values between 0 and

1. However in computations we will often start by using the more general form

K̃αβ̄ =
kαβ̄(τs,φ)

τp
b

. (2.12)

The purpose of this is to illustrate the special cancellations that occur uniquely for the

form (2.11).

For KKLT models with a single modulus, similar arguments [8] allow us to likewise

write

K̃αβ̄ =
kαβ̄(φ)

τ2/3
, (2.13)

where τ = Re(T ) is the size of the single 4-cycle.

We refer to [8] for the full derivations of (2.11) and (2.13), as our focus is on using

these formulae to compute soft terms.

2.2 Soft Breaking Terms

The full N = 1 scalar potential is

V = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

, (2.14)

where DiW = ∂iW + (∂iK)W . The soft supersymmetry breaking terms are found by

expanding (2.14) in powers of the matter fields using the expansions (2.1). We will give

the formulae for these below for diagonal matter metrics and in section 3.3 for nondiagonal

matter metrics, but first we make some general remarks.

Gravity-mediated supersymmetry breaking is quantified through the moduli F-terms,

given by

Fm = eK̂/2K̂mn̄Dn̄
¯̂W. (2.15)

– 6 –

+	
  	
  D-­‐terms	
  

naturally makes the soft terms of IIB flux models flavour-universal. We also compute the

anomaly mediated contribution within supergravity and find it to be suppressed compared

to the tree-level soft terms. In section 4 we perform a simple phenomenological analysis

of the soft terms, carrying out the running and illustrating this with sample spectra. In

section 5 we discuss the simplest KKLT one-modulus scenario, mostly to illustrate how our

results modify the previous analysis of this scenario. Finally, in section 6 we conclude.

2. Moduli SUSY Breaking

2.1 Effective N = 1 Supergravity Lagrangian

A four dimensional N = 1 supergravity Lagrangian is specified at two derivatives by the

Kähler potential K, superpotential W and gauge kinetic function fa. The computation of

soft terms starts by expanding these as a power series in the matter fields,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . , (2.1)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ +
[

Z(Φ, Φ̄)H1H2 + h.c.
]

+ . . . , (2.2)

fa = fa(Φ). (2.3)

Cα denotes a matter field and we have here, for convenience, separated the Higgs fields

H1,2 from the rest of the matter fields and specialised to the MSSM by assuming two Higgs

doublets. We use Φ to denote an arbitrary modulus field and do not specify the total

number of moduli.

In IIB compactifications the Kähler potential and superpotential for the moduli take

the standard form [4,18–20],

K̂(Φ, Φ̄) = −2 ln

(

V +
ξ̂

2g3/2
s

)

− ln

(

i

∫

Ω ∧ Ω̄

)

− ln(S + S̄). (2.4)

Ŵ (Φ) =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi . (2.5)

V is the Einstein-frame volume of the Calabi-Yau. The first term in K̂ is the Kähler

moduli dependence, including the leading α′ correction, while the second and third give

the complex structure and dilaton dependence. In the superpotential, the first term is the

flux-induced superpotential [18] that depends on dilaton and complex structure moduli.

When evaluated at the minimum of the potential with respect to these moduli, this is

denoted by W0. The second term is the nonperturbative superpotential responsible for

fixing the Kähler moduli. Note the separate dependences of Ŵ and K̂ on the complex

and Kähler moduli. This will play an important role when we subsequently discuss flavour

universality.

The gauge kinetic functions fa(Φ) depend on whether the gauge fields come from D3

or D7 branes and, in the latter case, on the 4-cycle wrapped by the D7 brane. If Ti is the

Kähler modulus corresponding to a particular 4-cycle, reduction of the DBI action for an

– 4 –



So_	
  SUSY	
  Terms	
  

Let us review the simplest argument of [8]. The notation used here will be more fully

explained in section 3. We suppose the Standard Model is supported on a small cycle τs

within a large bulk τb. This geometry is that encountered in models of branes at (resolved)

singularities or the large volume models which will be reviewed in section 3. In this case

locality implies the physical Yukawa couplings are determined only by the local geometry

and are independent of the overall volume. As K̂ = −2 lnV, for this to apply in (2.9) we

must have

K̃α ∼
kαβ̄(φ, τs)

V2/3
, (2.10)

where φ are complex structure moduli. Expanding kαβ̄(φ, τs) in a power series in τs, we

can write the resulting metric as

K̃αβ̄ =
τλ
s

V2/3
kαβ̄(φ), (2.11)

This expression holds in the limit of dilute fluxes and large cycle volume τs and will receive

corrections subleading in τs. For the minimal model in which all branes wrap the same

cycle, it was shown in [8] that λ = 1/3. For other cases λ may take values between 0 and

1. However in computations we will often start by using the more general form

K̃αβ̄ =
kαβ̄(τs,φ)

τp
b

. (2.12)

The purpose of this is to illustrate the special cancellations that occur uniquely for the

form (2.11).

For KKLT models with a single modulus, similar arguments [8] allow us to likewise

write

K̃αβ̄ =
kαβ̄(φ)

τ2/3
, (2.13)

where τ = Re(T ) is the size of the single 4-cycle.

We refer to [8] for the full derivations of (2.11) and (2.13), as our focus is on using

these formulae to compute soft terms.

2.2 Soft Breaking Terms

The full N = 1 scalar potential is

V = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

, (2.14)

where DiW = ∂iW + (∂iK)W . The soft supersymmetry breaking terms are found by

expanding (2.14) in powers of the matter fields using the expansions (2.1). We will give

the formulae for these below for diagonal matter metrics and in section 3.3 for nondiagonal

matter metrics, but first we make some general remarks.

Gravity-mediated supersymmetry breaking is quantified through the moduli F-terms,

given by

Fm = eK̂/2K̂mn̄Dn̄
¯̂W. (2.15)

– 6 –

Gaugini	
  Masses:	
  

We can assume without loss of generality that the superpotential Ŵ is real. To see this,

note from the Lagrangian in Appendix G of [23] that a phase rotation of the superpotential

can be achieved through phase redefinitions of the gauginos, chiral fermions and gravitino.

In this case the gravitino mass is real while both the gaugino masses and A-terms are

generically complex.

Given the F-terms, the easiest soft parameters to compute are the gaugino masses. In

terms of the unnormalised field λa, the canonically normalised gaugino field λ̂a is

λ̂a = (Refa)
1
2 λa. (2.16)

The canonically normalised gaugino masses are then given by

Ma =
1

2

Fm∂mfa

Refa
. (2.17)

The gaugino masses that follow from (2.7) are given by

Mi =
F s

2

1

Ts + 2πha(F )S
. (2.18)

In the limit of large cycle volume, the flux becomes diluted and the gauge coupling is

determined solely by the cycle size. We shall mostly work in this dilute flux approximation,

in which the gaugino masses become

Mi =
F s

2τs
. (2.19)

The fractional non-universality of gaugino masses is set by the flux contribution to the

gauge couplings. The quasi-universal relation (2.19) holds for the minimal geometry: if

there are several small cycles involved the expressions for gaugino masses may involve

several moduli and be more complicated.

For a diagonal matter metric the soft scalar Lagrangian can be written as

Lsoft = K̃α∂µCα∂µC̄ ᾱ − m2
αCαC̄ ᾱ −

(

1

6
Aαβγ ŶαβγCαCβCγ + Bµ̂Ĥ1Ĥ2 + h.c.

)

, (2.20)

with the scalar masses, A-terms and B-term being given by [2]

m2
α = (m2

3/2 + V0) − F m̄Fn∂m̄∂n log K̃α. (2.21)

Aαβγ = Fm
[

K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)
]

. (2.22)

Bµ̂ = (K̃H1K̃H2)
−

1
2

{

eK̂/2µ
(

Fm
[

K̂m + ∂m log µ − ∂m log(K̃H1K̃H2)
]

− m3/2

)

+
(

2m2
3/2 + V0

)

Z − m3/2F̄
m̄∂m̄Z + m3/2F

m
[

∂mZ − Z∂m log(K̃H1K̃H2)
]

−

F̄ m̄Fn
[

∂m∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)
]

}

. (2.23)

– 7 –

Scalars	
  (‘sfermions’)	
  masses:	
  

Mi =
F s

2τs
, (3.34)

m2
α = λ

(

F s

2τs

)(

F̄ s̄

2τs

)

, (3.35)

Aαβγ = −3λ

(

F s

2τs

)

(3.36)

Bµ̂ =
z0(φ)

(k0
H1

k0
H2

(φ))
1
2

λ(λ + 1)

(

F s

2τs

)(

F̄ s̄

2τs

)

≡ −
(

F s

2τs

)

(λ + 1)µ̂. (3.37)

The expressions (3.32) to (3.37) are appealingly simple. Note that the supersymmetric

parameters, namely Yαβγ and µ, both require knowledge of the flavour sector through the

complex structure moduli. However the soft parameters are entirely set by λ and F s. As

discussed in [8], 0 < λ < 1, and for the geometry of the minimal model λ = 1/3. In this

case, the pure soft parameters in the dilute flux approximation become

Mi =
F s

2τs
, (3.38)

mα =
1√
3
Mi, (3.39)

Aαβγ = −Mi, (3.40)

B = −4

3
Mi. (3.41)

It is amusing to note that the scalars, gauginos and A-terms in expressions (3.38) to (3.41)

are identical to that of the dilaton-dominated scenario that was much studied in heterotic

models. Notice that all soft terms are proportional to F s

2τs
∼ m3/2/ log(MP /m3/2) and are

therefore reduced with respect to the gravitino mass.

3.3 General Non-Diagonal Matter Metrics

We now want to extend the above formulae to the case of arbitrary non-diagonal matter

metrics. The expression for the normalised gaugino masses is unaltered

Mi =
F i

2τi
. (3.42)

The soft scalar Lagrangian is

Lsoft = K̃αβ̄∂µCα∂µC̄ β̄ − m̃2
αβ̄CαC̄ β̄ −

(

1

6
A′

αβγCαCβCγ + Bµ̂H1H2 + c.c

)

, (3.43)

where [2]

m̃2
αβ̄ = (m2

3/2 + V0)K̃αβ̄ − F̄ m̄Fn
(

∂m̄∂nK̃αβ̄ − (∂m̄K̃αγ̄)K̃ γ̄δ(∂nK̃δβ̄)
)

, (3.44)

A′
αβγ = eK̂/2Fm

[

K̂mYαβγ + ∂mYαβγ

−
(

(∂mK̃αρ̄)K̃
ρ̄δYδβγ + (α ↔ β) + (α ↔ γ)

) ]

. (3.45)

– 15 –



A-­‐Terms:	
  

Mi =
F s

2τs
, (3.34)

m2
α = λ

(

F s

2τs

)(

F̄ s̄

2τs

)

, (3.35)

Aαβγ = −3λ

(

F s

2τs

)

(3.36)

Bµ̂ =
z0(φ)

(k0
H1

k0
H2

(φ))
1
2

λ(λ + 1)

(

F s

2τs

)(

F̄ s̄

2τs

)

≡ −
(

F s

2τs

)

(λ + 1)µ̂. (3.37)

The expressions (3.32) to (3.37) are appealingly simple. Note that the supersymmetric

parameters, namely Yαβγ and µ, both require knowledge of the flavour sector through the

complex structure moduli. However the soft parameters are entirely set by λ and F s. As

discussed in [8], 0 < λ < 1, and for the geometry of the minimal model λ = 1/3. In this

case, the pure soft parameters in the dilute flux approximation become

Mi =
F s

2τs
, (3.38)

mα =
1√
3
Mi, (3.39)

Aαβγ = −Mi, (3.40)

B = −4

3
Mi. (3.41)

It is amusing to note that the scalars, gauginos and A-terms in expressions (3.38) to (3.41)

are identical to that of the dilaton-dominated scenario that was much studied in heterotic

models. Notice that all soft terms are proportional to F s

2τs
∼ m3/2/ log(MP /m3/2) and are

therefore reduced with respect to the gravitino mass.

3.3 General Non-Diagonal Matter Metrics

We now want to extend the above formulae to the case of arbitrary non-diagonal matter

metrics. The expression for the normalised gaugino masses is unaltered

Mi =
F i

2τi
. (3.42)

The soft scalar Lagrangian is

Lsoft = K̃αβ̄∂µCα∂µC̄ β̄ − m̃2
αβ̄CαC̄ β̄ −

(

1

6
A′

αβγCαCβCγ + Bµ̂H1H2 + c.c

)

, (3.43)

where [2]

m̃2
αβ̄ = (m2

3/2 + V0)K̃αβ̄ − F̄ m̄Fn
(

∂m̄∂nK̃αβ̄ − (∂m̄K̃αγ̄)K̃ γ̄δ(∂nK̃δβ̄)
)

, (3.44)

A′
αβγ = eK̂/2Fm

[

K̂mYαβγ + ∂mYαβγ

−
(

(∂mK̃αρ̄)K̃
ρ̄δYδβγ + (α ↔ β) + (α ↔ γ)

) ]

. (3.45)

– 15 –

Bμ-­‐Terms:	
  

We can assume without loss of generality that the superpotential Ŵ is real. To see this,

note from the Lagrangian in Appendix G of [23] that a phase rotation of the superpotential

can be achieved through phase redefinitions of the gauginos, chiral fermions and gravitino.

In this case the gravitino mass is real while both the gaugino masses and A-terms are

generically complex.

Given the F-terms, the easiest soft parameters to compute are the gaugino masses. In

terms of the unnormalised field λa, the canonically normalised gaugino field λ̂a is

λ̂a = (Refa)
1
2 λa. (2.16)

The canonically normalised gaugino masses are then given by

Ma =
1

2

Fm∂mfa

Refa
. (2.17)

The gaugino masses that follow from (2.7) are given by

Mi =
F s

2

1

Ts + 2πha(F )S
. (2.18)

In the limit of large cycle volume, the flux becomes diluted and the gauge coupling is

determined solely by the cycle size. We shall mostly work in this dilute flux approximation,

in which the gaugino masses become

Mi =
F s

2τs
. (2.19)

The fractional non-universality of gaugino masses is set by the flux contribution to the

gauge couplings. The quasi-universal relation (2.19) holds for the minimal geometry: if

there are several small cycles involved the expressions for gaugino masses may involve

several moduli and be more complicated.

For a diagonal matter metric the soft scalar Lagrangian can be written as

Lsoft = K̃α∂µCα∂µC̄ ᾱ − m2
αCαC̄ ᾱ −

(

1

6
Aαβγ ŶαβγCαCβCγ + Bµ̂Ĥ1Ĥ2 + h.c.

)

, (2.20)

with the scalar masses, A-terms and B-term being given by [2]

m2
α = (m2

3/2 + V0) − F m̄Fn∂m̄∂n log K̃α. (2.21)

Aαβγ = Fm
[

K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)
]

. (2.22)

Bµ̂ = (K̃H1K̃H2)
−

1
2

{

eK̂/2µ
(

Fm
[

K̂m + ∂m log µ − ∂m log(K̃H1K̃H2)
]

− m3/2

)

+
(

2m2
3/2 + V0

)

Z − m3/2F̄
m̄∂m̄Z + m3/2F

m
[

∂mZ − Z∂m log(K̃H1K̃H2)
]

−

F̄ m̄Fn
[

∂m∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)
]

}

. (2.23)

– 7 –



Explicit	
  Scenarios	
  
•  General	
  moduli:	
  S,	
  T,	
  U	
  

•  Need	
  to	
  chose	
  a	
  string	
  theory:	
  
	
  	
  	
  	
  HeteroOc	
  (smooth	
  or	
  singular)	
  
	
  	
  	
  	
  	
  IIA	
  
	
  	
  	
  	
  	
  IIB/F-­‐theory	
  (smooth	
  or	
  singular)	
  
	
  	
  	
  	
  	
  M-­‐theory	
  
	
  
	
  
•  Ingredients	
  for	
  MS:	
  Fluxes,	
  perturbaOve	
  and	
  non-­‐

perturbaOve	
  effects,...	
  
	
  	
  	
  	
  	
  



IIB	
  Scenarios	
  

KKLT	
  (Mirage	
  mediaOon)	
  	
  	
  
LVS	
  (LARGE	
  Volume	
  Scenarios)	
  

F-­‐theory	
  Gauge	
  MediaOon	
  models	
  



KKLT	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  W=W0+Ae-­‐aT	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  W0≈	
  10-­‐13	
  
Source	
  of	
  SUSY	
  breaking:	
  anO	
  D3	
  upli_ing	
  to	
  	
  
de	
  	
  	
  Sioer.	
  
Mirage	
  MediaOon	
  
So_	
  terms	
  	
  ≈	
  	
  M3/2	
  /ln(Mplanck/M3/2)	
  	
  may	
  need	
  to	
  
combine	
  with	
  Anomaly	
  mediaOon	
  èMirage	
  
mediaOon.	
  

	
  
Bunched	
  spectrum	
  +	
  	
  

Note that α → 1 in the limit Re(S0)/Re(Ti) → 0, i.e. in the limit when the magnetic flux-

induced O(α′2) correction in f (0)
a is negligible. At any rate, the above result gives rise to

M1 : M2 : M3 " (1 + 0.66α) : (2 + 0.2α) : (6 − 1.8α), (74)

where now α can take a generic value of order unity.

2. Partial KKLT stabilization [15]

In the partial-KKLT stabilization scenario, some Kähler moduli (Ti) are stabilized by a

non-perturbative superpotential, while the remaining Kähler moduli (Xp) are stabilized by

the sequestered uplifting potential. This scenario is an interesting generalization of KKLT

stabilization in which one combination of Im(Xp) can be identified as the QCD axion solving

the strong CP problem [15].

Like the case of KKLT stabilization, the SUSY-breaking brane is assumed to be stabilized at

the IR end of a warped throat, and thus the resulting uplifting operator θ2θ̄2P0 is independent

of the entire set of Kähler moduli TI = (Ti, Xp):

K = K0(Ti + T ∗
i , Xp + X∗

p ),

W = w0 +
∑

i

Aie
−aiTi,

P0 = constant. (75)

It is also assumed that the model allows a supersymmetric configuration satisfying

DiW = 0, DpW = W∂pK = 0. (76)

One simple such example would be

K = −2 ln[(Φ1 + Φ∗
1)

3/2 − (Φ2 + Φ∗
2)

3/2 − (Φ3 + Φ∗
3)

3/2],

W = w0 + A1e
−a1Φ1 + A2e

−a2(Φ2+Φ3), (77)

for which one can rewrite the effective SUGRA in terms of T1 = Φ1, T2 = Φ2 + Φ3, and

X1 = Φ2 − Φ3. Although Xp are stabilized by the uplifting potential Vlift = e2K/3P0, while Ti

are stabilized by non-perturbative superpotential, it turns out that the F I/(TI + T ∗
I ) are again

universal for the entire Kähler moduli TI = (Ti, Xp) as long as the moduli Kähler potential
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LARGE	
  Volume	
  Scenarios	
  (LVS)	
  
	
  	
  

U,S	
  stabilised	
  by	
  fluxes.	
  Not	
  need	
  to	
  tune	
  W0	
  

	
  
	
  
	
  
*  SUSY	
  broken	
  by	
  fluxes	
  <FT>≠0	
  
*  No	
  scale	
  structure	
  broken	
  in	
  a	
  control	
  way.	
  
Leading	
  order	
  in	
  1/volume	
  keeps	
  no-­‐scale.	
  



Relevant Scales 
•  String scale Ms=MP/V 1/2 

•  Kaluza-Klein scale MKK=MP/V 2/3 

•  Gravitino mass  m3/2=W0 MP/V 

•  Volume modulus mass   MV=Mp/V 3/2  

•  Lighter (fibre) moduli     Ml=Mp/V 5/3 

 
 
 



Original Scenarios 
•  MString = MGUT~ 1016 GeV   (V~105) 
 
•       W0~10-11<<1  to get TeV soft terms, or W0~1 and 1010 GeV soft terms ?  
•       Fits with coupling unification 
•       Natural scale of most  string inflation models. 
•       Axi-volume quintessence scale (w=-0.999….) 
 
•  MString = Mint.~ 1012 GeV  (V~1015) 
  
•       W0~1 
•       m3/2~1 TeV  (solves hierarchy problem!!!) 
•       QCD axion scale 
•       neutrino masses LLHH 
 
•  MString = 1 TeV      (V~1030)    
 
•        W0~1 
•       Most exciting,  5th Force OK m~10-3 eV, if SM non SUSY. Back reaction? 



SUSY Breaking 
•  Approximate Universality 

 
 
•   Cases:          FSM≠0  soft terms~m3/2  
                                       Ms~10

12
 GeV 

                           
                          FSM=0 soft terms <<m3/2 

                                                        or~m3/2 (loops)   
 



Visible or 
Hidden 
Sectors 

 

D3 Brane 

      or 

D7 Brane 

Where is 
the 
Standard 
Model? 



CHIRAL MATTER ON D7 BRANES 
SOFT SUSY BREAKING TERMS 

•  Approximate Universality 
•  No extra CP violation 
•  Mi = m3/2 / log (Mp/m3/2) 
•  String scale 1011 GeV ?? 
•  Solves hierarchy problem! 

Conlon et al. 

Simplest case 
λ=1/3 

from Table 3. Thus the measurements made are not compatible with the mSUGRA sce-

nario. Further measurements, e.g. of the gluino mass and the right handed squark masses,

would provide further evidence for discrimination against mSUGRA. Using the expected

mq̃L : mg̃ ratios, we could also investigate the M2 : M3 ≈ 1 : 3 prediction of the large

volume models. For this it would be useful to directly measure the gluino mass: to this

end the decay channel g̃ → qq̃R → qqχ̃0
1 may be exploited as well as the MT2 variable [68].

5. Conclusions

We have performed a detailed study of the expected superparticle spectrum and collider

phenomenology for large-volume string models. Our main conclusions are:

1. The large volume models give rise to a distinctive spectrum of gaugino masses, char-

acterised by

M1 : M2 : M3 = (1.5 → 2) : 2 : 6 (5.1)

This can be distinguished from the ratios that appear in e.g. mirage mediation or

mSUGRA.

The collider phenomenology depends heavily on the mass difference between M1 and

M2 and the slepton mass spectrum. If this is large, leading to many χ̃0
2 → χ̃0

1l
±l∓

events, kinematical reconstruction of the spectrum is much easier. This was discussed

in section 4.

2. The overall spectrum tends to be more bunched than that of a corresponding mSUGRA

model. This can be understood by the approximate unification, prior to the inclusion

of the effects of magnetic fluxes on the brane world-volume, of scalar and gaugino

masses at the intermediate (fundamental) scale. There is then less energy for the

physical masses to evolve from their theoretical boundary condition and the overall

spectrum falls within a narrower mass range.

This effect also occurs in models of mirage mediation, where gaugino masses are

(accidentally) unified at the intermediate scale.

3. More concretely we find: the LSP is mostly bino. The second neutralino is mostly

wino and is almost degenerate with charginos. Sleptons are almost degenerate, with

stau the lightest. The gluino is the heaviest sparticle. The ratio of the gaugino-squark

masses is larger than that predicted by mSUGRA.

4. We have quantified the uncertainty that appears in the weak scale spectra due to

uncertainties in the high-energy soft terms. The incorporation of such uncertainties

is essential in trying to make predictions for LHC signatures based on high-scale

string constructions.

5. We have used event generators and detector simulators to study possible signatures of

our models. We analysed the use and limitations of certain ‘counting’ observables to

contrast our models with other classes of models, especially a line through mSUGRA
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But: Local/Global Mixing 

•  Standard Model in small cycle 
•  SM cycle usually NOT fixed by non-

perturbative effects: 
 
•  SM chiral implies: Wnp= 

MSSM: <Φ>=0, so Wnp=0,              
(singularity)?  Or  <|Φ|2>= 

Blumenhagen et al.2007 



SM Cycle does not break SUSY 
‘Fayet-Iliopoulos’ à0 

‘Sequestered moduli/gravity mediated SUSY Breaking’ 

No-scale (vanishing soft terms) Suppressed  ! 



Sequestered Scenario 

* No CMP,  
* No gravitino induced moduli problem, 
* Volume reheating 

Model independent ! 



Different Scenarios 

•  Scalars 1/V3/2, others 1/V2 

•  All a/V3/2 

•  All 1/V2  (No CMP, unification, inflation !!!) 

•  Loop corrections ~ b/V5/3 

•  Mstring~1013-1015 GeV 
•  Field redefinitions at loop order: soft 

terms 1/V except ‘ultra-local’ SM at D3 
•  Controversy on AMSBàino-AMSB! 



F-­‐Theory	
  Models	
  

•  Compact	
  models	
  not	
  well	
  understood	
  yet	
  
•  EFT	
  similar	
  to	
  IIB	
  
•  Local	
  models:	
  assume	
  a	
  version	
  of	
  gauge	
  
mediaOon	
  with	
  a	
  larger	
  breaking	
  scale	
  

•  Phenomenology	
  explored	
  



HeteroOc	
  Scenarios	
  

HeteroOc	
  Orbifold	
  Models	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  
M-­‐Theory	
  Models	
  



HeteroOc	
  Orbifold	
  Models	
  

•  Moduli	
  StabilisaOon	
  less	
  understood.	
  

•  Version	
  of	
  mirage	
  mediaOon	
  

•  Natural	
  SUSY	
  (light	
  stops,...)	
  



M-­‐Theory	
  Models	
  

•  Not	
  explicit	
  models	
  

•  Moduli	
  stabilisaOon	
  (even)	
  less	
  understood	
  

•  A	
  version	
  of	
  ‘Mini-­‐split’	
  



Conclusions	
  
•  Rich	
  structure	
  of	
  so_	
  terms	
  from	
  string	
  
models	
  

•  Moduli	
  stabilisaOon	
  is	
  the	
  key	
  
•  All	
  relevant	
  energy	
  scales	
  should	
  be	
  
outcomes	
  (strong	
  constraints)	
  

•  Several	
  concrete	
  string	
  inspired	
  scenarios	
  
that	
  can	
  be	
  put	
  to	
  test	
  (mirage,inoAMSB,M-­‐
theory,	
  F-­‐Theory,	
  LVSn,	
  Natural,	
  mini-­‐split,...)	
  

•  Open	
  quesOons	
  before	
  a	
  controlled	
  scenario	
  
(loop	
  correcOons	
  to	
  maoer	
  K,	
  flavour	
  issues,...)	
  


