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Plan	  of	  the	  Discussion	  

•  Importance	  of	  Stringy	  studies	  of	  SUSY	  Breaking	  
•  Gravity	  vs	  Gauge	  vs	  Anomaly	  vs	  ...	  mediaOon	  
•  General	  Moduli	  MediaOon	  
•  Status	  of	  Moduli	  StabilisaOon	  
•  Constraints	  from	  Cosmology	  
•  HeteroOc	  vs	  IIB	  vs	  F-‐theory	  vs	  M-‐theory	  vs	  ....	  
Scenarios	  

•  Concrete	  String	  Inspired	  Scenarios	  



Importance	  of	  Stringy	  SUSY	  

•  UV	  compleOon	  of	  low-‐energy	  effects.	  
	  
•  Concrete	  case	  where	  UV	  effects	  relevant	  	  
	  	  	  (gravity+anomaly	  mediaOon	  but	  also	  gauge	  mediaOon)	  
	  
•  PotenOal	  to	  determine	  dynamically	  the	  relevant	  
scales	  MGUT	  and	  MSUSY.	  

•  Explore	  fundamental	  SUSY	  and	  mediaOon	  
mechanisms.	  



Key:	  Moduli	  StabilisaOon	  (MS)	  

•  Relevant	  Physical	  Scales	  (in	  Planck	  units)	  

•  Note:	  in	  MSSM	  MGUT=10-‐3=1016GeV,	  Mso_=	  1TeV	  
are	  put	  in	  by	  hand,	  in	  string	  theory	  should	  be	  
output.	  

MGUT	   MSUSY	   Mso_	   MEW	   Mcc
4=Λ	  

10-‐3	   >10-‐15	   >10-‐15	   10-‐15	   10-‐120	  



MODULI   STABILISATION 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 

+ String Dilaton: S 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 



Warning	  on	  Λ	  

•  In	  MSSM:	  Leave	  the	  cc	  problem	  to	  some	  ‘other	  
mechanism’.	  Weakest	  point	  of	  MSSM!	  

•  In	  String	  Theory	  (even	  worst)	  
*  Λ	  is	  an	  outcome	  
*  Cannot	  rely	  on	  ‘other	  mechanism’	  
*  If	  for	  a	  scenario	  there	  is	  an	  ‘yet	  unknown	  
mechanism’,	  it	  most	  probably	  select	  very	  
ungeneric	  models	  

*  For	  IIB	  there	  is	  a	  mechanism:	  The	  Landscape.	  
	  



The	  Landscape	  

•  Good:	  It	  allows	  	  for	  the	  first	  Ome	  to	  trust	  calculaOons	  
for	  low-‐energy	  SUSY	  breaking.	  

	  
•  Bad:	  	  missed	  opportunity	  to	  have	  new	  physics	  at	  low	  
energies	  from	  small	  Λ.	  

	  

•  Ugly:	  It	  allows	  	  not	  to	  use	  SUSY	  to	  address	  the	  
hierarchy	  problem	  (Split	  SUSY,	  High-‐energy	  SUSY)	  



Cosmological	  Constraints	  

•  Cosmological	  Moduli	  Problem	  (CMP)	  
	  	  	  	  	  MLMP	  >	  10	  Tev	  or	  a	  2nd	  stage	  of	  inflaOon?	  
	  
•  GraviOno	  (or	  graviOno	  induced	  CMP)	  

•  OvershooOng	  (a_er	  inflaOon,	  large	  reheaOng	  T,...)	  

•  Dark	  RadiaOon	  (Neff	  ≥	  3.04)	  

	  
	  	  	  	  



General	  SUSY	  Scenarios	  

•  Moduli	  StabilisaOon	  with	  SUSY,	  	  <FM>≠0	  
	  	  	  	  Moduli	  (gravity)	  mediaOon:	  Mso_≈	  M3/2	  

	  	  	  	  	  Problems:	  flavour,	  CMP,	  ...	  

•  Moduli	  StabilisaOon	  with	  SUSY,	  	  <FM>=0	  
	  	  	  	  Two	  steps,	  suitable	  for	  gauge	  mediaOon	  
	  	  	  	  	  Problems:	  μ-‐problem,	  light	  graviOno	  and	  moduli	  (CMP),	  	  	  	  	  	  
	  	  	  	  	  complicated	  in	  string	  theory,...(no	  concrete	  realistaion	  )	  



EffecOve	  Field	  Theory	  

Let us review the simplest argument of [8]. The notation used here will be more fully

explained in section 3. We suppose the Standard Model is supported on a small cycle τs

within a large bulk τb. This geometry is that encountered in models of branes at (resolved)

singularities or the large volume models which will be reviewed in section 3. In this case

locality implies the physical Yukawa couplings are determined only by the local geometry

and are independent of the overall volume. As K̂ = −2 lnV, for this to apply in (2.9) we

must have

K̃α ∼
kαβ̄(φ, τs)

V2/3
, (2.10)

where φ are complex structure moduli. Expanding kαβ̄(φ, τs) in a power series in τs, we

can write the resulting metric as

K̃αβ̄ =
τλ
s

V2/3
kαβ̄(φ), (2.11)

This expression holds in the limit of dilute fluxes and large cycle volume τs and will receive

corrections subleading in τs. For the minimal model in which all branes wrap the same

cycle, it was shown in [8] that λ = 1/3. For other cases λ may take values between 0 and

1. However in computations we will often start by using the more general form

K̃αβ̄ =
kαβ̄(τs,φ)

τp
b

. (2.12)

The purpose of this is to illustrate the special cancellations that occur uniquely for the

form (2.11).

For KKLT models with a single modulus, similar arguments [8] allow us to likewise

write

K̃αβ̄ =
kαβ̄(φ)

τ2/3
, (2.13)

where τ = Re(T ) is the size of the single 4-cycle.

We refer to [8] for the full derivations of (2.11) and (2.13), as our focus is on using

these formulae to compute soft terms.

2.2 Soft Breaking Terms

The full N = 1 scalar potential is

V = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

, (2.14)

where DiW = ∂iW + (∂iK)W . The soft supersymmetry breaking terms are found by

expanding (2.14) in powers of the matter fields using the expansions (2.1). We will give

the formulae for these below for diagonal matter metrics and in section 3.3 for nondiagonal

matter metrics, but first we make some general remarks.

Gravity-mediated supersymmetry breaking is quantified through the moduli F-terms,

given by

Fm = eK̂/2K̂mn̄Dn̄
¯̂W. (2.15)

– 6 –

+	  	  D-‐terms	  

naturally makes the soft terms of IIB flux models flavour-universal. We also compute the

anomaly mediated contribution within supergravity and find it to be suppressed compared

to the tree-level soft terms. In section 4 we perform a simple phenomenological analysis

of the soft terms, carrying out the running and illustrating this with sample spectra. In

section 5 we discuss the simplest KKLT one-modulus scenario, mostly to illustrate how our

results modify the previous analysis of this scenario. Finally, in section 6 we conclude.

2. Moduli SUSY Breaking

2.1 Effective N = 1 Supergravity Lagrangian

A four dimensional N = 1 supergravity Lagrangian is specified at two derivatives by the

Kähler potential K, superpotential W and gauge kinetic function fa. The computation of

soft terms starts by expanding these as a power series in the matter fields,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . , (2.1)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ +
[

Z(Φ, Φ̄)H1H2 + h.c.
]

+ . . . , (2.2)

fa = fa(Φ). (2.3)

Cα denotes a matter field and we have here, for convenience, separated the Higgs fields

H1,2 from the rest of the matter fields and specialised to the MSSM by assuming two Higgs

doublets. We use Φ to denote an arbitrary modulus field and do not specify the total

number of moduli.

In IIB compactifications the Kähler potential and superpotential for the moduli take

the standard form [4,18–20],

K̂(Φ, Φ̄) = −2 ln

(

V +
ξ̂

2g3/2
s

)

− ln

(

i

∫

Ω ∧ Ω̄

)

− ln(S + S̄). (2.4)

Ŵ (Φ) =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi . (2.5)

V is the Einstein-frame volume of the Calabi-Yau. The first term in K̂ is the Kähler

moduli dependence, including the leading α′ correction, while the second and third give

the complex structure and dilaton dependence. In the superpotential, the first term is the

flux-induced superpotential [18] that depends on dilaton and complex structure moduli.

When evaluated at the minimum of the potential with respect to these moduli, this is

denoted by W0. The second term is the nonperturbative superpotential responsible for

fixing the Kähler moduli. Note the separate dependences of Ŵ and K̂ on the complex

and Kähler moduli. This will play an important role when we subsequently discuss flavour

universality.

The gauge kinetic functions fa(Φ) depend on whether the gauge fields come from D3

or D7 branes and, in the latter case, on the 4-cycle wrapped by the D7 brane. If Ti is the

Kähler modulus corresponding to a particular 4-cycle, reduction of the DBI action for an

– 4 –



So_	  SUSY	  Terms	  

Let us review the simplest argument of [8]. The notation used here will be more fully

explained in section 3. We suppose the Standard Model is supported on a small cycle τs

within a large bulk τb. This geometry is that encountered in models of branes at (resolved)

singularities or the large volume models which will be reviewed in section 3. In this case

locality implies the physical Yukawa couplings are determined only by the local geometry

and are independent of the overall volume. As K̂ = −2 lnV, for this to apply in (2.9) we

must have

K̃α ∼
kαβ̄(φ, τs)

V2/3
, (2.10)

where φ are complex structure moduli. Expanding kαβ̄(φ, τs) in a power series in τs, we

can write the resulting metric as

K̃αβ̄ =
τλ
s

V2/3
kαβ̄(φ), (2.11)

This expression holds in the limit of dilute fluxes and large cycle volume τs and will receive

corrections subleading in τs. For the minimal model in which all branes wrap the same

cycle, it was shown in [8] that λ = 1/3. For other cases λ may take values between 0 and

1. However in computations we will often start by using the more general form

K̃αβ̄ =
kαβ̄(τs,φ)

τp
b

. (2.12)

The purpose of this is to illustrate the special cancellations that occur uniquely for the

form (2.11).

For KKLT models with a single modulus, similar arguments [8] allow us to likewise

write

K̃αβ̄ =
kαβ̄(φ)

τ2/3
, (2.13)

where τ = Re(T ) is the size of the single 4-cycle.

We refer to [8] for the full derivations of (2.11) and (2.13), as our focus is on using

these formulae to compute soft terms.

2.2 Soft Breaking Terms

The full N = 1 scalar potential is

V = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

, (2.14)

where DiW = ∂iW + (∂iK)W . The soft supersymmetry breaking terms are found by

expanding (2.14) in powers of the matter fields using the expansions (2.1). We will give

the formulae for these below for diagonal matter metrics and in section 3.3 for nondiagonal

matter metrics, but first we make some general remarks.

Gravity-mediated supersymmetry breaking is quantified through the moduli F-terms,

given by

Fm = eK̂/2K̂mn̄Dn̄
¯̂W. (2.15)

– 6 –

Gaugini	  Masses:	  

We can assume without loss of generality that the superpotential Ŵ is real. To see this,

note from the Lagrangian in Appendix G of [23] that a phase rotation of the superpotential

can be achieved through phase redefinitions of the gauginos, chiral fermions and gravitino.

In this case the gravitino mass is real while both the gaugino masses and A-terms are

generically complex.

Given the F-terms, the easiest soft parameters to compute are the gaugino masses. In

terms of the unnormalised field λa, the canonically normalised gaugino field λ̂a is

λ̂a = (Refa)
1
2 λa. (2.16)

The canonically normalised gaugino masses are then given by

Ma =
1

2

Fm∂mfa

Refa
. (2.17)

The gaugino masses that follow from (2.7) are given by

Mi =
F s

2

1

Ts + 2πha(F )S
. (2.18)

In the limit of large cycle volume, the flux becomes diluted and the gauge coupling is

determined solely by the cycle size. We shall mostly work in this dilute flux approximation,

in which the gaugino masses become

Mi =
F s

2τs
. (2.19)

The fractional non-universality of gaugino masses is set by the flux contribution to the

gauge couplings. The quasi-universal relation (2.19) holds for the minimal geometry: if

there are several small cycles involved the expressions for gaugino masses may involve

several moduli and be more complicated.

For a diagonal matter metric the soft scalar Lagrangian can be written as

Lsoft = K̃α∂µCα∂µC̄ ᾱ − m2
αCαC̄ ᾱ −

(

1

6
Aαβγ ŶαβγCαCβCγ + Bµ̂Ĥ1Ĥ2 + h.c.

)

, (2.20)

with the scalar masses, A-terms and B-term being given by [2]

m2
α = (m2

3/2 + V0) − F m̄Fn∂m̄∂n log K̃α. (2.21)

Aαβγ = Fm
[

K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)
]

. (2.22)

Bµ̂ = (K̃H1K̃H2)
−

1
2

{

eK̂/2µ
(

Fm
[

K̂m + ∂m log µ − ∂m log(K̃H1K̃H2)
]

− m3/2

)

+
(

2m2
3/2 + V0

)

Z − m3/2F̄
m̄∂m̄Z + m3/2F

m
[

∂mZ − Z∂m log(K̃H1K̃H2)
]

−

F̄ m̄Fn
[

∂m∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)
]

}

. (2.23)

– 7 –

Scalars	  (‘sfermions’)	  masses:	  

Mi =
F s

2τs
, (3.34)

m2
α = λ

(

F s

2τs

)(

F̄ s̄

2τs

)

, (3.35)

Aαβγ = −3λ

(

F s

2τs

)

(3.36)

Bµ̂ =
z0(φ)

(k0
H1

k0
H2

(φ))
1
2

λ(λ + 1)

(

F s

2τs

)(

F̄ s̄

2τs

)

≡ −
(

F s

2τs

)

(λ + 1)µ̂. (3.37)

The expressions (3.32) to (3.37) are appealingly simple. Note that the supersymmetric

parameters, namely Yαβγ and µ, both require knowledge of the flavour sector through the

complex structure moduli. However the soft parameters are entirely set by λ and F s. As

discussed in [8], 0 < λ < 1, and for the geometry of the minimal model λ = 1/3. In this

case, the pure soft parameters in the dilute flux approximation become

Mi =
F s

2τs
, (3.38)

mα =
1√
3
Mi, (3.39)

Aαβγ = −Mi, (3.40)

B = −4

3
Mi. (3.41)

It is amusing to note that the scalars, gauginos and A-terms in expressions (3.38) to (3.41)

are identical to that of the dilaton-dominated scenario that was much studied in heterotic

models. Notice that all soft terms are proportional to F s

2τs
∼ m3/2/ log(MP /m3/2) and are

therefore reduced with respect to the gravitino mass.

3.3 General Non-Diagonal Matter Metrics

We now want to extend the above formulae to the case of arbitrary non-diagonal matter

metrics. The expression for the normalised gaugino masses is unaltered

Mi =
F i

2τi
. (3.42)

The soft scalar Lagrangian is

Lsoft = K̃αβ̄∂µCα∂µC̄ β̄ − m̃2
αβ̄CαC̄ β̄ −

(

1

6
A′

αβγCαCβCγ + Bµ̂H1H2 + c.c

)

, (3.43)

where [2]

m̃2
αβ̄ = (m2

3/2 + V0)K̃αβ̄ − F̄ m̄Fn
(

∂m̄∂nK̃αβ̄ − (∂m̄K̃αγ̄)K̃ γ̄δ(∂nK̃δβ̄)
)

, (3.44)

A′
αβγ = eK̂/2Fm

[

K̂mYαβγ + ∂mYαβγ

−
(

(∂mK̃αρ̄)K̃
ρ̄δYδβγ + (α ↔ β) + (α ↔ γ)

) ]

. (3.45)
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A-‐Terms:	  

Mi =
F s

2τs
, (3.34)

m2
α = λ

(

F s

2τs

)(

F̄ s̄

2τs

)

, (3.35)

Aαβγ = −3λ

(

F s

2τs

)

(3.36)

Bµ̂ =
z0(φ)

(k0
H1

k0
H2

(φ))
1
2

λ(λ + 1)

(

F s

2τs

)(

F̄ s̄

2τs

)

≡ −
(

F s

2τs

)

(λ + 1)µ̂. (3.37)

The expressions (3.32) to (3.37) are appealingly simple. Note that the supersymmetric

parameters, namely Yαβγ and µ, both require knowledge of the flavour sector through the

complex structure moduli. However the soft parameters are entirely set by λ and F s. As

discussed in [8], 0 < λ < 1, and for the geometry of the minimal model λ = 1/3. In this

case, the pure soft parameters in the dilute flux approximation become

Mi =
F s

2τs
, (3.38)

mα =
1√
3
Mi, (3.39)

Aαβγ = −Mi, (3.40)

B = −4

3
Mi. (3.41)

It is amusing to note that the scalars, gauginos and A-terms in expressions (3.38) to (3.41)

are identical to that of the dilaton-dominated scenario that was much studied in heterotic

models. Notice that all soft terms are proportional to F s

2τs
∼ m3/2/ log(MP /m3/2) and are

therefore reduced with respect to the gravitino mass.

3.3 General Non-Diagonal Matter Metrics

We now want to extend the above formulae to the case of arbitrary non-diagonal matter

metrics. The expression for the normalised gaugino masses is unaltered

Mi =
F i

2τi
. (3.42)

The soft scalar Lagrangian is

Lsoft = K̃αβ̄∂µCα∂µC̄ β̄ − m̃2
αβ̄CαC̄ β̄ −

(

1

6
A′

αβγCαCβCγ + Bµ̂H1H2 + c.c

)

, (3.43)

where [2]

m̃2
αβ̄ = (m2

3/2 + V0)K̃αβ̄ − F̄ m̄Fn
(

∂m̄∂nK̃αβ̄ − (∂m̄K̃αγ̄)K̃ γ̄δ(∂nK̃δβ̄)
)

, (3.44)

A′
αβγ = eK̂/2Fm

[

K̂mYαβγ + ∂mYαβγ

−
(

(∂mK̃αρ̄)K̃
ρ̄δYδβγ + (α ↔ β) + (α ↔ γ)

) ]

. (3.45)

– 15 –

Bμ-‐Terms:	  

We can assume without loss of generality that the superpotential Ŵ is real. To see this,

note from the Lagrangian in Appendix G of [23] that a phase rotation of the superpotential

can be achieved through phase redefinitions of the gauginos, chiral fermions and gravitino.

In this case the gravitino mass is real while both the gaugino masses and A-terms are

generically complex.

Given the F-terms, the easiest soft parameters to compute are the gaugino masses. In

terms of the unnormalised field λa, the canonically normalised gaugino field λ̂a is

λ̂a = (Refa)
1
2 λa. (2.16)

The canonically normalised gaugino masses are then given by

Ma =
1

2

Fm∂mfa

Refa
. (2.17)

The gaugino masses that follow from (2.7) are given by

Mi =
F s

2

1

Ts + 2πha(F )S
. (2.18)

In the limit of large cycle volume, the flux becomes diluted and the gauge coupling is

determined solely by the cycle size. We shall mostly work in this dilute flux approximation,

in which the gaugino masses become

Mi =
F s

2τs
. (2.19)

The fractional non-universality of gaugino masses is set by the flux contribution to the

gauge couplings. The quasi-universal relation (2.19) holds for the minimal geometry: if

there are several small cycles involved the expressions for gaugino masses may involve

several moduli and be more complicated.

For a diagonal matter metric the soft scalar Lagrangian can be written as

Lsoft = K̃α∂µCα∂µC̄ ᾱ − m2
αCαC̄ ᾱ −

(

1

6
Aαβγ ŶαβγCαCβCγ + Bµ̂Ĥ1Ĥ2 + h.c.

)

, (2.20)

with the scalar masses, A-terms and B-term being given by [2]

m2
α = (m2

3/2 + V0) − F m̄Fn∂m̄∂n log K̃α. (2.21)

Aαβγ = Fm
[

K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)
]

. (2.22)

Bµ̂ = (K̃H1K̃H2)
−

1
2

{

eK̂/2µ
(

Fm
[

K̂m + ∂m log µ − ∂m log(K̃H1K̃H2)
]

− m3/2

)

+
(

2m2
3/2 + V0

)

Z − m3/2F̄
m̄∂m̄Z + m3/2F

m
[

∂mZ − Z∂m log(K̃H1K̃H2)
]

−

F̄ m̄Fn
[

∂m∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)
]

}

. (2.23)
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Explicit	  Scenarios	  
•  General	  moduli:	  S,	  T,	  U	  

•  Need	  to	  chose	  a	  string	  theory:	  
	  	  	  	  HeteroOc	  (smooth	  or	  singular)	  
	  	  	  	  	  IIA	  
	  	  	  	  	  IIB/F-‐theory	  (smooth	  or	  singular)	  
	  	  	  	  	  M-‐theory	  
	  
	  
•  Ingredients	  for	  MS:	  Fluxes,	  perturbaOve	  and	  non-‐

perturbaOve	  effects,...	  
	  	  	  	  	  



IIB	  Scenarios	  

KKLT	  (Mirage	  mediaOon)	  	  	  
LVS	  (LARGE	  Volume	  Scenarios)	  

F-‐theory	  Gauge	  MediaOon	  models	  



KKLT	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  W=W0+Ae-‐aT	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  with	  	  	  	  W0≈	  10-‐13	  
Source	  of	  SUSY	  breaking:	  anO	  D3	  upli_ing	  to	  	  
de	  	  	  Sioer.	  
Mirage	  MediaOon	  
So_	  terms	  	  ≈	  	  M3/2	  /ln(Mplanck/M3/2)	  	  may	  need	  to	  
combine	  with	  Anomaly	  mediaOon	  èMirage	  
mediaOon.	  

	  
Bunched	  spectrum	  +	  	  

Note that α → 1 in the limit Re(S0)/Re(Ti) → 0, i.e. in the limit when the magnetic flux-

induced O(α′2) correction in f (0)
a is negligible. At any rate, the above result gives rise to

M1 : M2 : M3 " (1 + 0.66α) : (2 + 0.2α) : (6 − 1.8α), (74)

where now α can take a generic value of order unity.

2. Partial KKLT stabilization [15]

In the partial-KKLT stabilization scenario, some Kähler moduli (Ti) are stabilized by a

non-perturbative superpotential, while the remaining Kähler moduli (Xp) are stabilized by

the sequestered uplifting potential. This scenario is an interesting generalization of KKLT

stabilization in which one combination of Im(Xp) can be identified as the QCD axion solving

the strong CP problem [15].

Like the case of KKLT stabilization, the SUSY-breaking brane is assumed to be stabilized at

the IR end of a warped throat, and thus the resulting uplifting operator θ2θ̄2P0 is independent

of the entire set of Kähler moduli TI = (Ti, Xp):

K = K0(Ti + T ∗
i , Xp + X∗

p ),

W = w0 +
∑

i

Aie
−aiTi,

P0 = constant. (75)

It is also assumed that the model allows a supersymmetric configuration satisfying

DiW = 0, DpW = W∂pK = 0. (76)

One simple such example would be

K = −2 ln[(Φ1 + Φ∗
1)

3/2 − (Φ2 + Φ∗
2)

3/2 − (Φ3 + Φ∗
3)

3/2],

W = w0 + A1e
−a1Φ1 + A2e

−a2(Φ2+Φ3), (77)

for which one can rewrite the effective SUGRA in terms of T1 = Φ1, T2 = Φ2 + Φ3, and

X1 = Φ2 − Φ3. Although Xp are stabilized by the uplifting potential Vlift = e2K/3P0, while Ti

are stabilized by non-perturbative superpotential, it turns out that the F I/(TI + T ∗
I ) are again

universal for the entire Kähler moduli TI = (Ti, Xp) as long as the moduli Kähler potential
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LARGE	  Volume	  Scenarios	  (LVS)	  
	  	  

U,S	  stabilised	  by	  fluxes.	  Not	  need	  to	  tune	  W0	  

	  
	  
	  
*  SUSY	  broken	  by	  fluxes	  <FT>≠0	  
*  No	  scale	  structure	  broken	  in	  a	  control	  way.	  
Leading	  order	  in	  1/volume	  keeps	  no-‐scale.	  



Relevant Scales 
•  String scale Ms=MP/V 1/2 

•  Kaluza-Klein scale MKK=MP/V 2/3 

•  Gravitino mass  m3/2=W0 MP/V 

•  Volume modulus mass   MV=Mp/V 3/2  

•  Lighter (fibre) moduli     Ml=Mp/V 5/3 

 
 
 



Original Scenarios 
•  MString = MGUT~ 1016 GeV   (V~105) 
 
•       W0~10-11<<1  to get TeV soft terms, or W0~1 and 1010 GeV soft terms ?  
•       Fits with coupling unification 
•       Natural scale of most  string inflation models. 
•       Axi-volume quintessence scale (w=-0.999….) 
 
•  MString = Mint.~ 1012 GeV  (V~1015) 
  
•       W0~1 
•       m3/2~1 TeV  (solves hierarchy problem!!!) 
•       QCD axion scale 
•       neutrino masses LLHH 
 
•  MString = 1 TeV      (V~1030)    
 
•        W0~1 
•       Most exciting,  5th Force OK m~10-3 eV, if SM non SUSY. Back reaction? 



SUSY Breaking 
•  Approximate Universality 

 
 
•   Cases:          FSM≠0  soft terms~m3/2  
                                       Ms~10

12
 GeV 

                           
                          FSM=0 soft terms <<m3/2 

                                                        or~m3/2 (loops)   
 



Visible or 
Hidden 
Sectors 

 

D3 Brane 

      or 

D7 Brane 

Where is 
the 
Standard 
Model? 



CHIRAL MATTER ON D7 BRANES 
SOFT SUSY BREAKING TERMS 

•  Approximate Universality 
•  No extra CP violation 
•  Mi = m3/2 / log (Mp/m3/2) 
•  String scale 1011 GeV ?? 
•  Solves hierarchy problem! 

Conlon et al. 

Simplest case 
λ=1/3 

from Table 3. Thus the measurements made are not compatible with the mSUGRA sce-

nario. Further measurements, e.g. of the gluino mass and the right handed squark masses,

would provide further evidence for discrimination against mSUGRA. Using the expected

mq̃L : mg̃ ratios, we could also investigate the M2 : M3 ≈ 1 : 3 prediction of the large

volume models. For this it would be useful to directly measure the gluino mass: to this

end the decay channel g̃ → qq̃R → qqχ̃0
1 may be exploited as well as the MT2 variable [68].

5. Conclusions

We have performed a detailed study of the expected superparticle spectrum and collider

phenomenology for large-volume string models. Our main conclusions are:

1. The large volume models give rise to a distinctive spectrum of gaugino masses, char-

acterised by

M1 : M2 : M3 = (1.5 → 2) : 2 : 6 (5.1)

This can be distinguished from the ratios that appear in e.g. mirage mediation or

mSUGRA.

The collider phenomenology depends heavily on the mass difference between M1 and

M2 and the slepton mass spectrum. If this is large, leading to many χ̃0
2 → χ̃0

1l
±l∓

events, kinematical reconstruction of the spectrum is much easier. This was discussed

in section 4.

2. The overall spectrum tends to be more bunched than that of a corresponding mSUGRA

model. This can be understood by the approximate unification, prior to the inclusion

of the effects of magnetic fluxes on the brane world-volume, of scalar and gaugino

masses at the intermediate (fundamental) scale. There is then less energy for the

physical masses to evolve from their theoretical boundary condition and the overall

spectrum falls within a narrower mass range.

This effect also occurs in models of mirage mediation, where gaugino masses are

(accidentally) unified at the intermediate scale.

3. More concretely we find: the LSP is mostly bino. The second neutralino is mostly

wino and is almost degenerate with charginos. Sleptons are almost degenerate, with

stau the lightest. The gluino is the heaviest sparticle. The ratio of the gaugino-squark

masses is larger than that predicted by mSUGRA.

4. We have quantified the uncertainty that appears in the weak scale spectra due to

uncertainties in the high-energy soft terms. The incorporation of such uncertainties

is essential in trying to make predictions for LHC signatures based on high-scale

string constructions.

5. We have used event generators and detector simulators to study possible signatures of

our models. We analysed the use and limitations of certain ‘counting’ observables to

contrast our models with other classes of models, especially a line through mSUGRA
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But: Local/Global Mixing 

•  Standard Model in small cycle 
•  SM cycle usually NOT fixed by non-

perturbative effects: 
 
•  SM chiral implies: Wnp= 

MSSM: <Φ>=0, so Wnp=0,              
(singularity)?  Or  <|Φ|2>= 

Blumenhagen et al.2007 



SM Cycle does not break SUSY 
‘Fayet-Iliopoulos’ à0 

‘Sequestered moduli/gravity mediated SUSY Breaking’ 

No-scale (vanishing soft terms) Suppressed  ! 



Sequestered Scenario 

* No CMP,  
* No gravitino induced moduli problem, 
* Volume reheating 

Model independent ! 



Different Scenarios 

•  Scalars 1/V3/2, others 1/V2 

•  All a/V3/2 

•  All 1/V2  (No CMP, unification, inflation !!!) 

•  Loop corrections ~ b/V5/3 

•  Mstring~1013-1015 GeV 
•  Field redefinitions at loop order: soft 

terms 1/V except ‘ultra-local’ SM at D3 
•  Controversy on AMSBàino-AMSB! 



F-‐Theory	  Models	  

•  Compact	  models	  not	  well	  understood	  yet	  
•  EFT	  similar	  to	  IIB	  
•  Local	  models:	  assume	  a	  version	  of	  gauge	  
mediaOon	  with	  a	  larger	  breaking	  scale	  

•  Phenomenology	  explored	  



HeteroOc	  Scenarios	  

HeteroOc	  Orbifold	  Models	  and	  	  	  	  	  	  	  	  	  
M-‐Theory	  Models	  



HeteroOc	  Orbifold	  Models	  

•  Moduli	  StabilisaOon	  less	  understood.	  

•  Version	  of	  mirage	  mediaOon	  

•  Natural	  SUSY	  (light	  stops,...)	  



M-‐Theory	  Models	  

•  Not	  explicit	  models	  

•  Moduli	  stabilisaOon	  (even)	  less	  understood	  

•  A	  version	  of	  ‘Mini-‐split’	  



Conclusions	  
•  Rich	  structure	  of	  so_	  terms	  from	  string	  
models	  

•  Moduli	  stabilisaOon	  is	  the	  key	  
•  All	  relevant	  energy	  scales	  should	  be	  
outcomes	  (strong	  constraints)	  

•  Several	  concrete	  string	  inspired	  scenarios	  
that	  can	  be	  put	  to	  test	  (mirage,inoAMSB,M-‐
theory,	  F-‐Theory,	  LVSn,	  Natural,	  mini-‐split,...)	  

•  Open	  quesOons	  before	  a	  controlled	  scenario	  
(loop	  correcOons	  to	  maoer	  K,	  flavour	  issues,...)	  


