Overview Of Meta-Tools

Tools to make tools (plus a few tools to check things along the way

Ben O'Leary

Julius-Maximilians-Universität Würzburg

Post-Planck Bethe Forum, BCTP Bonn, May 29th, 2013

Meta-tools

Tools to make tools

Introduction

I'm going to talk about some very specific meta-tools:

- ► SARAH
- ► FeynRules (+ ASperGe)
- ▶ LanHEP
- ▶ Susyno
- ► PyR@te

These are meta-tools in the sense that they generate code to assist in turning parameter points of models into observables to compare against experiment.

Introduction, continued

I will also mention some other supplementary tools concerned with getting SSB correct:

- ▶ ScannerS
- ▶ Vscape
- ► CosmoTransitions
- ► Vevacious—you should definitely use this!

Also I will mention tools that can be adapted to solving SSB:

- ► HOM4PS2
- ▶ paramotopy
- ▶ StringVacua

The main point though is that you should use Vevacious.

 ${\tt SARAH},\, {\tt FeynRules},\, {\rm and}\,\, {\tt LanHEP}$

Meta-tools for Lagrangian to Feynman rules

$Idea \rightarrow observables$

- human brain(s): idea → QFT as fields + symmetries
- ▶ meta-tools / student: fields + symmetries $(\rightarrow W) \rightarrow \mathcal{L}$
- ▶ meta-tools: \mathcal{L} → Feynman rules (as understood by other codes)
- MC simulators / other tools: Feynman rules +
 ∠ parameter values → observables

Meta-tools for $\mathcal{L} \to \text{Feynman rules}$

SARAH, FeynRules, and LanHEP automate $\mathcal{L} \to \text{Feynman rules}$.

- ► Feynman rules should come from expansion around minimum of potential.
- ► SSB not easy to automate (especially with extended gauge groups).
- Usual R_{ξ} gauges require knowledge of shift to minimum.

Meta-tools for RGEs

Parameters also may need to be run from one scale to another; the derivation of renormalization group equations from \mathcal{L} can be automated.

- ► SARAH creates SPheno with 2-loop SUSY RGEs
- ► Susyno creates 2-loop SUSY β functions in Mathematica
- ▶ PyR@te will create 2-loop non-SUSY β functions in Python and C++

Meta-tool inputs

Meta-tool	written in	required input		
SARAH	Mathematica	SUSY: $\mathcal{G}, \Phi_i^{\mathcal{G}}, \mathcal{W}, SSB, \Phi_i^m$		
		non-SUSY: $\mathcal{G}, \Phi_i^{\mathcal{G}}, V, SSB, \Phi_i^m$		
FeynRules	Mathematica	SUSY: $\mathcal{G}, \Phi_i^{\mathcal{G}}, \mathcal{W}, \mathcal{L}_{\text{SUSY}}, \text{SSB}, \xi, \Phi_i^m$		
		non-SUSY: $\mathcal{G}, \Phi_i^{\mathcal{G}}, V, SSB, \xi, \Phi_i^m$		
LanHEP	С	\mathcal{L} (Φ_i^m) (can use $\mathcal{W} \to V$), SSB, ξ		
Susyno	Mathematica	$\mathcal{G},\Phi_i^{\mathcal{G}},\mathbf{Z}$		
PyR@te	Python	$\mathcal{G},\Phi_i^{\mathcal{G}},V$		

 \mathcal{G} : gauge group $\Phi_i^{\mathcal{G}}$: gauge eigenstates \mathcal{L} : Lagrangian

 \mathcal{L} : Lagrangian ξ : gauge-fixing

 \mathcal{W} : superpotential

Z: global symmetries

 $\Phi^m_i \colon$ mass eigenstates

V: potential (including Yukawa terms)

SSB: spontaneous symmetry breaking

 $\mathcal{L}_{\text{SUSY}}$: soft SUSY-breaking terms

Meta-tool outputs

Meta-tool	${\cal L}$	RGEs	spectrum	UFO $etc.$
SARAH	IAT _E X	SPheno	SPheno (NLO)	√
FeynRules	IAT _E X	X	${\tt ASperGe}~({\rm LO})$	√
LanHEP	ĿŦĿX	X	X	√
Susyno	ugly	Mathematica	X	X
PyR@te	IAT _E X	LATEX, Python, C++	X	X

MC simulator support (all support UFO):

Meta-tool	FeynArts /FORMCalc	CalcHEP /CompHEP	WHIZARD /O'Mega	MadGraph /MadEvent	Sherpa
SARAH	✓	✓	✓	through UFO	X
FeynRules	✓	✓	✓	✓	√
LanHEP	•	√	X	through UFO	X

SARAH, FeynRules, and LanHEP

Tools for spontaneous symmetry breaking

Getting desired SSB minima

- ► Relatively easy to engineer tree-level V with extremum at desired VEVs.
- ► Saddle points / maxima can be rejected by presence of tachyonic scalar masses-squared.
- ▶ ScannerS: automatic solution of \mathcal{L} parameters to get desired VEVs, + calculates mass eigenstates for scalars.
 - ► Advertized as finding all minima of potentials, fine print shows that it doesn't do that yet.
- ▶ Vscape: automatic generation of 1-loop V from W, finds minimum near given start points.
 - ▶ Doesn't do vector superfield contributions yet.

Metastability

- ► Desired VEVs don't have to be global minimum if false vacuum is long-lived enough.
- ▶ $\Gamma/\text{vol.} = A \exp(-B)$, should be $\lesssim (13 \text{ Gyr})^{-4}$
- ▶ CosmoTransitions: calculates B for given V+ false vacuum VEVs + true vacuum VEVs, also does finite T, can calculate critical T and phases.
- ▶ A usually estimated on dimensional grounds, not so important, as $B \approx 400$ for $\tau \approx 13$ Gyr (100 GeV/ $A^{1/4}$): 1% change in $B \rightarrow$ factor 2.8 change in τ

Vevacious

Vevacious: code to check V for global minimum.

- ightharpoonup Guaranteed to find all tree-level extrema for given V!
 - ► Uses homotopy continuation via HOM4PS2.
 - ► Alternative homotopy continuation codes include Bertini, paramotopy.
 - ► Generally considered faster than Gröbner bases (implemented in StringVacua, for example).
- ► Tree-level extrema used as starting points for MINUIT (through PyMinuit) for 1-loop potential.
- ► If input VEVs correspond to false vacuum, CosmoTransitions is called to calculate tunneling time.
- ► Quick: typically a few seconds for 4 to 6 "VEVing" scalars.
- ► Takes SLHA file as input.

B. O'Leary

Available now(-ish) from HepForge!

10 slides \rightarrow 1 slide...

Summary

Summary

There are several HEP meta-tools to make your lives easier:

- ▶ Meta-tools take over from the stage of having written down \mathcal{L} .
- \blacktriangleright Some meta-tools even find \mathcal{L} for you.
- ▶ There are meta-tools to run \mathcal{L} parameters from one Q to another.
- ► SSB still needs to be put in by hand to some extent.
- ► SSB can be automatically checked, at least.

Thank you for your attention!

Bonus content

Backup slides

Backup slide

Just trust me, OK?