Aging Effects in COMPASS PixelGEM Detectors

Bernhard Ketzer

Technische Universität München

Bundesministerium für Bildung und Forschung

COMPASS at CERN

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

SPS

LHC

• p up to 400 GeV

• secondary hadrons (π , K, ...): 2-10⁷/s

• tertiary μ (polarized): 4-10⁷/s

Beam Tracking in COMPASS

Hadron beam:

- Intensity 10⁷ s⁻¹
- Local flux density >10⁵ mm⁻²s⁻¹
- SciFi \Rightarrow act as secondary target $x/X_0 = 1.6\% 2.8\%$

 $x/\lambda_{\rm I} = 0.9\% - 1.5\%$

Beam tracking with GEMs?

- GEM material budget 0.4% X₀
- Rate capability > 10⁵ mm⁻²s⁻¹
- Strip occupancy too high!

GEM Foils

- triple GEM stack
- foils segmented on one side:
 5 sectors
- large holes for gas exchange in outer region, no gas amplification
- Cu thickness reduced to

1-2 μm

Readout Plane

PixelGEM

Readout Plane

- Pixel plane: 2 layers (50µm)
- Strip plane: 2 layers (50µm)

39 x 39 Pixel 1521 channels pitch 850 μm 5 μm copper layer

Readout Plane

PixelGEM Detector

Material Budget

	Center x/X_0 (‰)	Periphery x/X_0 (‰)		
Honeycomb support	0	2.94		
Drift foil (5µm Cu / 1µm)	0.53 / 0.25			
3 GEM foils (5µm Cu / 1µm)	2.09 / 0.75			
Readout circuit	1.00	1.34		
Gas	0.06			
Shielding	0.16			
Total	3.84 / 2.22	7.09 / 5.48		

30% less interactions in passive material with $1\mu m Cu$ layer

Beam Profiles

Muon Beam

- 160 GeV/c μ
- Intensity 4.2.10⁷/s
- up to 1.2-10⁵ /mm²/s

Hadron Beam

- 190 GeV/c π
- Intensity 10⁶/s
- up to 1.2-10⁴ /mm²/s

Efficiency GP03XY

Efficiency

Cluster amplitude

Total charge:

- 2008/2009 (π beam): (500 ±20) mC/cm²
- 2010/2011 (μ beam): (1000±20) mC/cm²

PixelGEM

Opening of GP03XY

Inflating the detector...

...and opening it

PixelGEM

A Surprise

Reason for Inefficiency

(c) GEM2 top

(e) GEM3 top

(d) GEM2 bottom

(f) GEM3 bottom

Optical Microscope

Optical Microscope

Zeiss optical microscope

Sample 1

Scanning Electron Microscope

Zeiss SEM:

Pictures of the samples

SEM

Unused GEM foil

Aged foil, central region Third GEM, position 1

- Larger rim
- Depositions around the edge of the hole and inside the hole

SEM

Unused GEM foil

Aged foil, central region Third GEM, position 1

What are the depositions?

⇒Energy-dispersive X-ray spectroscopy (EDS)

PixelGEM

EDS analyses of new GEM foil

EDX Analysis

20µm

Between holes

Atomic composition:

Ort	Cu	С	Ν	0
Lochrand	31.65%	57.96%	0%	10.39%
Zwischenregion	100%	0%	0%	0%

PixelGEM

EDS analyses of original GEM foil

EDS Analysis

Edge of hole, old foil

Region between holes, old foill

Atomic composition:

Ort	Cu	С	Ν	0	Si	S
Whiskers	6.39%	51.78%	0%	35.09%	1.46%	5.29%
Zwischenregion	13.51%	51.98%	0%	30.60%	0.80%	3.11%

EDS analyses of Dow Corning RT

EDS analyses of Dow Corning 50°C

EDS analyses of Araldite RT

EDS analyses of Araldite 50 °C

Depositions

Depositions

Sealing of Detector: Dow Corning 1-2577 Conformal Coating Siloxane R₃Si-O-SiR₃

Removal of glue during production: H_2SO_4

Source of Aging?

Cu exposed to H_2S [T.T.M. Tran et al., Corrosion Science 45, 2787 (2003)]

PixelGEM

Summary of the observations

- The original GEM foil clearly is coated with Si and S in the damaged regions, not outside
- A new GEM foil does not contain any Si or S
- Araldite does not contain any sulfur, only carbon, nitrogen and oxygen at room temperature and carbon and oxygen at 50 °C in an oven
- Dow Corning contains Si, but no S
- S may come from H₂SO₄ used during production
- Reason for outer ring not yet understood

Test Setup

- Long term measurements
- Heatable box for outgassing tests
- Amptek Mini X-ray
- Single wire counter for stability monitoring

Spare Slides

Efficiency

- Plateau: 98.5% at G~5000
- Background prob. per pixel: 0.1%
- Roadwidth: 0.6 mm

- Plateau: 96% at G~7500
- Background prob. per pixel: 2.5%
- Roadwidth: 1.0 mm

Spatial Residuals

Low intensity: 4-10⁶ s⁻¹

High intensity: 2-10⁸ s⁻¹

Weighted mean: $\sigma_x = 135 \mu m$

Time Residual

Principle

Low intensity: 4-10⁶ s⁻¹

• 3 analog samples per trigger

- Timing: rising edge of signal
- Reconstruct t₀ from known pulse shape

PixelGEM

Time Residual

Principle

- Timing: rising edge of signal
- Reconstruct t₀ from known pulse shape

$$\sigma_t = 7.3 \text{ns}$$

