

Kr-Calibration

Relative

Calibratior

Genera

Argor

Neon

Stabilitv

Setup Results

83Kr Calibration

Roman Schmitz

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

> for the CBELSA/TAPS-Collaboration and the GEM-TPC-Collaboration

Workshop on TPCs at high rate experiments, Bonn 2013-Mar-01

Kr-Calibration

Relative

- Calibratio
- Gener
- Argor
- Neon
- dE/dx
- Stability
- Setup Results

1 GEM-TPC Prototype

- 2 Gain calibration using Kr83m
- 3 Relative Calibration Results
 - General
 - Argon
 - Neon
 - dE/dx

4 Stability measurements

- Setup
- Results

Table of Contents

I I I I OQC

- Kr-Calibration
- Relative
- Calibratio
- Genera
- Argor
- Neon
- dE/dx
- Stability
- Setup Besults

Inner tracking upgrade for CBELSA/TAPS and FOPI

FOPI Spectrometer @GSI

- inside 0.6T solenoid
- TPC for improved vertexing
- external PID reference (CDC, RPC)
- beam/cosmic tests in 2011/2012

Crystal Barrel Calorimeter @ELSA

- optimized for neutral decay channels
- future inner tracking upgrade
- superconducting solenoid up to 2/2.5T)
- access to charged decay channels, vertexing

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

- Kr-Calibration
- Relative
- Calibration
- Genera
- Neon
- dE/dx
- Stability
- Setup Results

GEM-TPC prototype

radius 5/15 cm

GEM-TPC prototype

- drift length 72.8 cm
- triple GEM (Standard CERN), 8 iris-shaped sectors
- 10254 hexagonal pads (1.5 mm)
- FE: 4x42 T2K-AFTER-Chips

Padplane with hexagonal pads (1.5 mm)

(日)

Kr-Calibration

- Relative
- Calibration
- Genera
- Argon
- Neon
- dE/dx
- Stability
- Setup Results

Energy-Calibration with ^{83m}Kr

- In adioactive gas → full readout coverage
- GEM gain variations
- Iocal gain variations due to bending, losses at sector borders
- optimize dE/dx-resolution
- study energy resolution performance
- gain stability monitoring

- metastable state with t_{1/2}=1.83 h
- internal conversion factor ~ 2000
- well-known narrow energy levels
- multiple energy lines (K, L, M, Auger, gamma) from 9 to 41 keV
- previously used in TPCs of STAR, ALICE, NA49, ALEPH.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Calculated decay spectrum

Calculated energy spectrum for the drift gases used in our prototype.

Kr-Calibration

Relative

Calibration

General

Argon Neon dE/dx

Stability

Setup Results

Production and Integration

- ⁸¹Br $(\alpha, 2n)^{83}$ Rb with σ =1300 mb at 26 MeV
- production at HISKP Bonn Cyclotron with 54 MeV α-beam (up to 18 MBq possible)
- integration in gas-bypass

Schematic view

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

General

Observed Krypton Decays

- diffusion of the Krypton inside the chamber, few 10s after injection.
- maximum activity reached after a few minutes

- Kr-Calibration
- Relative Calibration

General

- Argon Neon dE/dx
- Stability
- Setup Results

Observed Krypton Decays

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

- random trigger ~500 Hz
- event display with ${\sim}50$ krypton decays inside GEM-TPC
- source activity 5.3 MBq, observed ${\sim}1.5{\cdot}10^6$

General

Krypton Spectra in Ar/CO₂ 90/10

uncorrected online spectra for Ar/CO₂ (Ne/CO₂) 90/10

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

- GEM at gain of ~ 2000 (both gases)
- drift field 360 V/cm

Krypton Spectra in Ar/CO₂ 90/10

Kr-Calibration

Relative Calibration

General

Argon Neon dE/dx

Stability

Setup Results

Prototype GEM-TPC (uncorrected)

published result for ALICE TPC

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- uncorrected online spectra for Ar/CO₂ (Ne/CO₂) 90/10
- GEM at gain of \sim 2000 (both gases)
- drift field 360 V/cm

General

- channel-wise energy spectra ۲
- losses at sector borders, edges ۲
- ۲ normalized to median
- iterative method \rightarrow relative corrections ۲

Relative calibration method

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

- **Kr-Calibration**
- Relative Calibration

General

Argon Neon dE/dx

Stability

Setup Results

Gain uniformity and distribution

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- uniformity of 4.52% to 0.31% after 3 iterations
- stability of distribution (3 datasets) below 1 %
- tested and confirmed with MC simulations extensively
- gainmap with relative factors show sectors/borders

Kr-Calibration

Relative Calibration

General

Argon Neon dE/dx

Stability

Setup Results

Gain uniformity and distribution

- uniformity of 4.52% to 0.31% after 3 iterations
- stability of distribution (3 datasets) below 1 %
- tested and confirmed with MC simulations extensively
- gainmap with relative factors show sectors/borders

12

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kr-Calibration

Relative

Calibratio

General

Argon

Neon

dE/dx

Stability

Setup Results

13

- Kr-Calibration
- Relative
- Calibrati
- General
- Argon
- dE/dx
- Stability
- Setup Results

- GEM HV at 83 % (gain \sim 2000)
- resolution curve from multi-peak-fit to spectrum
- uncalibrated: (47.72±0.57)%/ $\sqrt{(E)}$, calibrated: (33.69±0.14)%/ $\sqrt{(E)}$

peak [keV]	uncorrected	corrected
9.4	12.07 %	7.48%
12.65	10.82 %	6.86%
14.2	10.35 %	6.62%
17.95	9.43 %	6.11%
19.65	9.09%	5.92%
27.4	7.91 %	5.24 %
29.0	7.73%	5.12%
32.1	7.40 %	4.92%
41.55	6.61 %	4.43%

14

Energy Resolution in Ar/CO₂ 90/10

Kr-Calibration

Relative

Calibration

General

Argon

Neon

dE/dx

Stability

Setup Results

Krypton Spectra in Ne/CO₂ 90/10

15

- Kr-Calibration
- Relative
- Calibrat
- Genera
- Neon
- dE/dx
- Stability
- Setup Results

16

Energy Resolution in Ne/CO₂ 90/10

- GEM HV at 72 % (gain \sim 2000)
- low statistics in photon peaks (conversion in Neon)
- resolution curve from multi-peak-fit to spectrum
- uncalibrated: (41.96±0.69)%/ $\sqrt{(E)}$, calibrated: (36.34±0.34)%/ $\sqrt{(E)}$

peak [keV]	uncorrected	corrected
9.4	12.51 %	7.89%
12.65	10.92 %	7.27%
14.2	10.35 %	7.02%
17.95	9.29 %	6.50%
19.65	8.90 %	6.30%
27.4	7.61 %	5.58%
29.0	7.41 %	5.46%
32.1	7.06 %	5.25%
41.55	6.24 %	4.73%

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Kr-Calibratior

- Relative
- Gonoral
- Argon
- Neon
- dE/dx
- Stability Setup

Effects on dE/dx resolution

- Full FOPI reconstruction, TPC dE/dx
- resolution improvement: 10-15%
- work in progress (Plots by F.V. Böhmer)

しして 西部 ふかく かん むしょうくう

Kr-Calibration

Relative

Calibration

Genera Argon

dE/dx

Stability

Setup Results

Small TPC prototype with monitoring

- small GEM-TPC with 1500 channels, 10x10 cm active area and 7.7 cm drift
- monitoring chamber parallel to TPC
- high-precision altimeter module (accuracy 15-20 cm, sea level \approx 8m/1hPa)
- constantly averaging p,T (up to 45 cycles/sec)
- > 1 month of data taking, T \approx 12-25 °C (stabilized), p \approx 980-1030 hPa

Temperature dependence

- Kr-Calibration
- Relative
- General
- Argon
- Neon
- dE/dx
- Stability
- Setup Results

Kr-Calibratior

Relative

Calibrati

Argon

Neon

dE/dx

Stability

Setup Results p/T dependence of gain

- exponential dependence on p/T (gas density, λ) expected
- $G = G_0 \cdot \exp(-\mu(p/T))$ with μ =3.0456 ± 0.0022, G_0 for 20 °C, 760 Torr

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

values consistent for different bins in p and T

Kr-Calibration

Relative

- Calibration
- Genera
- Argon
- Neon
- dE/dx

Stability

Setup Results

Summary and Outlook

Summary

- Kr-83m successfully used for calibration (decay-rate 1.5 · 10⁶ 1/s in TPC)
- calibration method developed, tested, confirmed (MC)
- excellent energy resolution (4.4%/4.7% for Argon/Neon in 41.55 keV peak)

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- improvement of 10-15% in energy resolution and dE/dx
- global gain calibration/monitoring very important

TODO

- optimize calibration w.r.t. dE/dx resolution
- test rate-stability of gain (charge-up)

Kr-Calibration

Relative

Calibration

Genera

Argon

Neon

dE/dx

Stability

Setup Results

Thank you for your attention !

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Backup slides

Backup slides

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Backup slides

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Accumulation of Krypton activity

Backup slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Backup slides

Observed Krypton activity

Backup slides

Energy absorption coefficients

Backup slides

Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., and Olsen, K. (2010), XCOM: Photon Cross Section Database (version 1.5). [Online] Available: http://physics.nist.gov/xcom [Wednesday, 27-Feb-2013 09:27:08 EST]. National Institute of Standards and Technology, Gaithersburg, MD.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Backup slides

Schematic view

- lead shielding for γ radiation
- gas tight container for source
- connection to gas system via bypass valve
- typical gas flow \approx 40-60 ltr/h

Backup slides

Gain estimation from cosmic muons

Fluctuations FOPI

Backup slides

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- gain-fluctuations of %-order
- no usable p/T data available (→ further studies)
- correction of fluctuations over measurement time
- short time-scale with linear interpolation
- Iluctuations before: 2.9 %, after: 0.01 %
- effect on main peak resolution $\approx 0.2\%$

