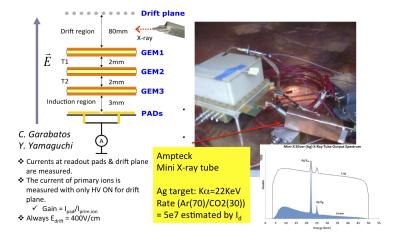
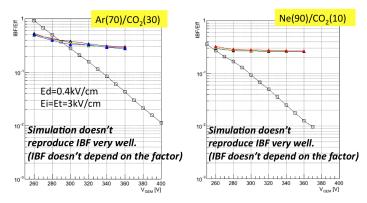
Simulation Study of Space-Charge and IBF

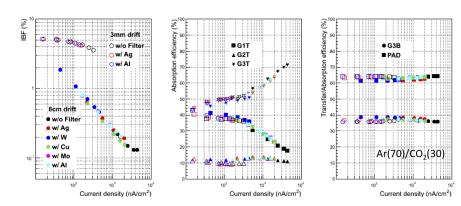

Taku Gunji

Center for Nuclear Study, the University of Tokyo

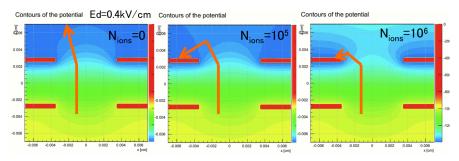
February 12, 2013


IBF Measurements at CERN

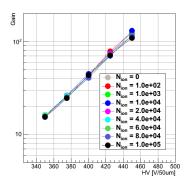
- Systematic measurements at RD51 lab. in CERN.
 - Field dependence (ΔV_{GEM}, T1, T2, Induction)
 - Rate, x-ray position dependence (charge current density)

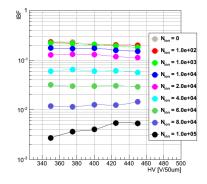

First comparison of IBF between real and simulations

- Simulation (Penning factor) is tuned to reproduce the gain.
- However, IBF in simulation doesn't agree with the measurements.
- \triangleright Strong dependence on V_{GEM} in the measurements

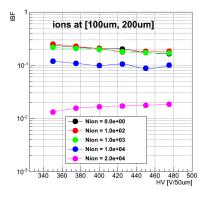

More results from the measurements

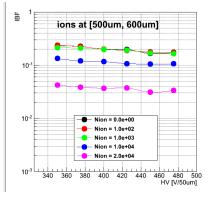
- ▶ Rate, Energy (target), drift-space (3 mm or 80 mm) dependence
- Clear rate and drift-space dependence of IBF.
- ▶ Indicating space-charge effect (\propto rate \times gain \times seed) to IBF...

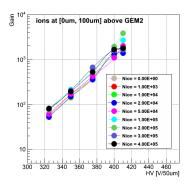


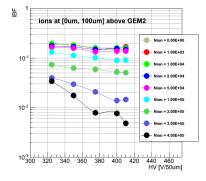

Space-charge simulations: Method

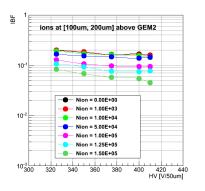
- \blacktriangleright Slice the space in drift direction by 100 μ m
- ▶ Uniformly distribute ions in space $z \in [Z, Z + 100 \mu m]$
- Calculate the field by ANSYS and evaluate gain/IBF by Garfield++
- ► Example of the field around GEM1 with N_{ions} =0, 10^5 , 10^6 with E_{drift} =0.4kV/cm. less IBF with huge N_{ions} ?

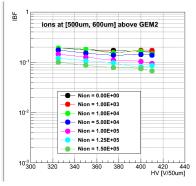



- ▶ lons at $z \in [0, 100 \ \mu \mathrm{m}]$ above GEM1. $E_{drift} = 0.4 \mathrm{kV/cm}$. Ar/CO₂=(70/30). N_{ions} : from 0 to 10^5
- ▶ Gain doesn't change. Onset of decrease of IBF around $N_{ions} \sim 10^4$
- ▶ For $N_{ions} \ge 10^4$, IBF gets much smaller with more N_{ions} .

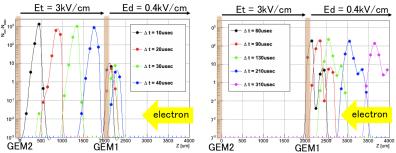



- ▶ lons at $z \in [100, 200 \ \mu \mathrm{m}]$ (left) and $z \in [500, 600 \ \mu \mathrm{m}]$ (right) above GEM1. N_{ions} : from 0 to 2×10^4
- ▶ For $N_{ions} \ge 10^4$, IBF gets smaller (×10) with more N_{ions} .
- ▶ N_{ions} cannot be 4×10^4 . In this case, the field is reverted (no electrons going into GEM).

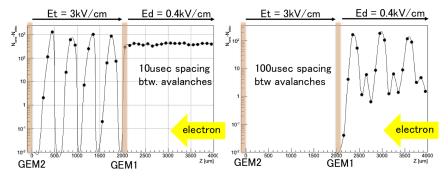



- ▶ lons at $z \in [0, 100 \ \mu \text{m}]$ above GEM2. $E_{drift} = 0.4 \text{kV/cm}$, $E_{T1} = 3.5 \text{kV/cm}$, T1=2mm, N_{ions} : from 0 to 4×10^5
- ► Gain changes by 2. (due to the improvement of electron collection? lons lead to higher potential around.)
- ▶ Onset of decrease of IBF around $N_{ions} \sim 5 \times 10^4$. Onset depends on underlying field.

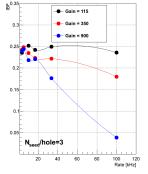
- ▶ lons at $z \in [100, 200 \ \mu \text{m}]$ and $z \in [500, 600 \ \mu \text{m}]$ above GEM2. N_{ions} : from 0 to 1.5×10^5
- ▶ IBF changes for $N_{ions} \ge 5 \times 10^4$. Onset depends on underlying field.
- ▶ N_{ions} cannot be 4×10^5 . The field is reverted (no electrons going into GEM).

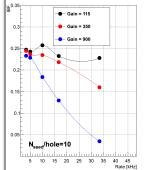


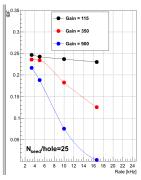
A little more dynamical simulations


- ▶ Look at the spacial ion profile along drift direction for each $10\mu{\rm sec}$ after avalanche.
 - lon profile from 10μ sec to 40 μ sec (left) and from 60μ sec to 300μ sec (right) after the avalanche (at the gain of 10000)
 - ► lons are swept sway from T1 quickly (3kV/cm) and stays above GEM1 due to low field (0.4kV/cm)
- ▶ No transverse profile is taken into account.

Ion profile per one seed (Ar/CO2=70/30, Gain~1000)

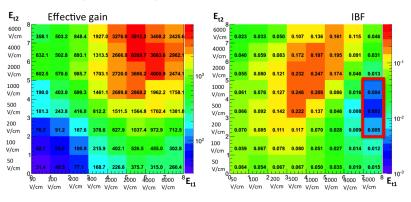

Ion Profile


- ► Summed up the ion profile at each time step and make ion profile corresponding for various rate.
 - ▶ If rate/hole = 100kHz, ion profiles for each 10μ sec are summed up.
 - ▶ Ion profile under 100kHz (left) and 10kHz (right) avalanches at the gain =1000 and the number of seeds/hole (N_{seed})=1
- Scale this profile according to gain and N_{seed}



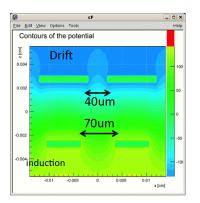
Ion Back Flow vs. Rate/Seed

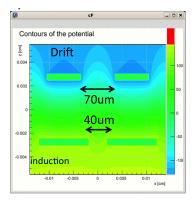
- ▶ IBF vs. Rate and $N_{seed} = (3, 10, 25)$ at Gain = 115, 350, 900
- Clear rate dependence and dependence is much larger for higher gain
- ▶ IBF gets smaller with higher rate and high gain
 - ightharpoonup Rate at CERN $\sim 25 \mathrm{kHz}$. $N_{seed} = 20\text{-}40$. Gain ~ 2000
 - ► Large effect of space-charge to IBF
- ▶ More dynamical and iterative simulations will be done!!



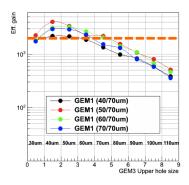
IBF studies with various configurations

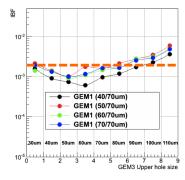
- Motivation
 - ► To search for the optimal solutions for the suppression of IBF
 - ► For example, 0.25% of IBF at gain=2000 (ALICE GEM-TPC upgrade)
- What have been studied so far.
 - → 3 GEM configurations under Ar/CO₂ and Ne/CO₂(/N₂)
 - 4 GEM configurations under Ne/CO₂(/N₂)
 - Hole Alignment Dependence
 - Conical GEMs
 - Extoic GEMs (Flower-GEM, COBRA-GEM)


3 GEM configurations

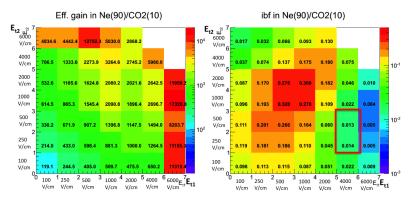

- ▶ 3 GEM configurations. Ar/CO₂=(70/30)
- ▶ GEM2 is mis-aligned with respect to GEM1 and GEM3.
- $V_{GEM1} = 260, V_{GEM2} = 360, V_{GEM3} = 460$
- ▶ 0.3-0.5% of IBF with high $E_{T1~(GEM1-GEM2)}\sim 6 {\rm kV/cm}$ and low $E_{T2~(GEM2-GEM3)}\sim 0.5 {\rm kV/cm}$.

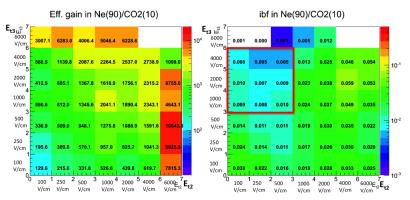
Conical GEMs


- Conical GEMs (different hole size on upper and bottom electrode)
- ▶ Left: Field of GEM1 in case Narrow(N)→Wide(W)
- ▶ Right: Field of GEM1 in case Wide(W)→Narrow(N)
- ▶ N→W is promissing. Better extraction of electrons and IBF.

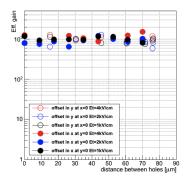


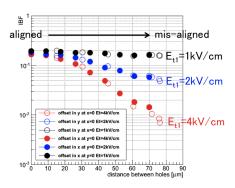
IBF with Conical GEMs


- ▶ IBF with conical GEMs with different hole size
 - ► $E_{T1} = 6 \text{kV/cm}$, $E_{T2} = 0.5 \text{kV/cm}$. Ar/CO₂=(70/30). GEM2 is mis-aligned.
 - ▶ GEM1 upper hole size: $40-70\mu$ m. bottom hole size: 70μ m
 - ▶ GEM3 upper hole size: $30\text{-}100\mu\text{m}$. bottom hole size: $70\mu\text{m}$
- ightharpoonup imes 2-3 improvement of IBF with $40\mu m/70\mu m$ GEM1 and $40-70\mu m/70\mu m$ GEM3.

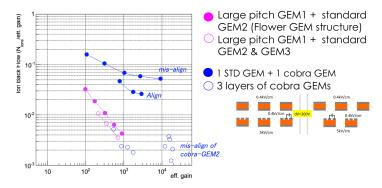

3 GEM configurations in Ne/CO₂

- ▶ 3 GEMs under Ne/CO₂=(90/10). GEM2 is mis-aligned.
- $ightharpoonup E_{T1}$ cannot go higher than 4kV/cm.
 - ▶ Townsend: $\sim 14/\text{cm}$ at 6kV/cm. $\times 7$ gain in 2mm.
 - ▶ Adding N_2 ? 14/cm \rightarrow 4/cm at 6kV/cm with 5% N_2
- ▶ 1-2% of IBF with $E_{T1} \sim 4 \text{kV/cm}$ and $E_{T2} \sim 0.5 \text{kV/cm}$.


4 GEM configurations in Ne/CO₂

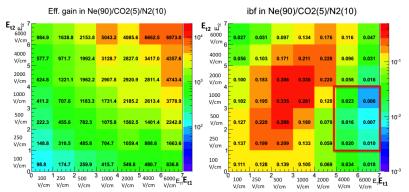

- ▶ 4 GEM configuration under Ne/CO₂. E_{T1}=4kV/cm
- GEM2 and GEM4 are mis-aligned.
- $ightharpoonup E_{T2}$ and E_{T3} scan.
- \triangleright ×2-3 improvement with 4 GEM configurations. 0.5% of IBF can be achievable with low E_{T2} and high E_{T3} .

Hole Alignment


- ▶ IBF with 3 GEMs. Ne/CO₂=(90/10).
- ▶ IBF vs. hole distance between GEM1 and GEM2.
- ▶ Strong alignment dependence (×10) for $E_{T1} \ge 2-4$ kV/cm.
- ▶ No alignment dependence for $E_{T1} \sim 1 \text{ kV/cm}$. But IBF is worse.

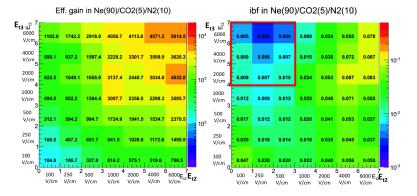
Exotic GEMs

- ▶ IBF simulations with Flower-GEM and COBRA-GEM
- ▶ 0.2% of IBF is achievable with Flower-GEM and 3 COBRA-GEMs
 - Need to control geometry for the Flower GEM
 - Less sensitive to the COBRA-GEM for the alignment.


Next Steps

- ▶ More dynamical simulations for space-charge effects.
- Search for the optimal solutions for IBF
 - Combination of GEMs with different pitch, hole size, and hole shape (conical)
 - ▶ For example, opaque and conical GEM for GEM1 (high E_{T1}).
 - We have to rely on the ramdom alignment.
 - Need to check uniformity of gain and IBF.

Backup Slides


3 GEM configurations adding N_2

- ▶ 3 GEMs under $Ne/CO_2/N_2=(90/5/10)$. GEM2 is mis-aligned.
- ▶ Townsend: $\sim 2/\text{cm}$ at 6kV/cm. $\times 1.3$ gain in 2mm.
- ▶ 0.5% 2% of IBF with $E_{T1}\sim$ 4-6kV/cm and $E_{T2}\sim$ 0.5kV/cm.

4 GEM configurations adding N_2

- ▶ 4 GEMs under Ne/CO₂/N₂=(90/5/10). GEM2 and GEM4 is mis-aligned. E_{T1} =4kV/cm
- ▶ 0.3% 1% of IBF with $E_{T1} \sim$ 4-6kV/cm and $E_{T2} \sim$ 0.5kV/cm.
- ► ×2-3 improvement with 4 GEMs

