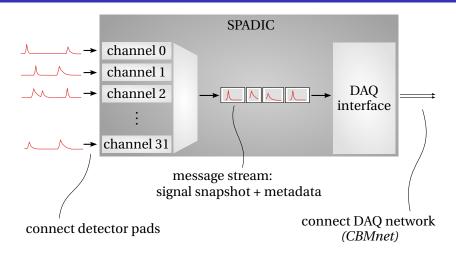
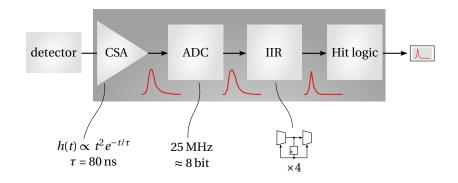
SPADIC – Self-triggered charge pulse processing ASIC

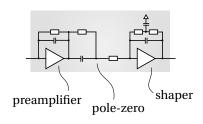
Tim Armbruster, Peter Fischer, Michael Krieger, Ivan Peric

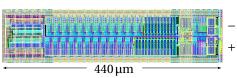
ZITI, Universität Heidelberg michael.krieger@ziti.uni-heidelberg.de


TPC Workshop, Bonn 28.02.2013

Introduction


- <u>Self-triggered Pulse Amplification and Digitization ASIC</u>
- main application: TRD subsystem of CBM (FAIR/GSI)


Concept

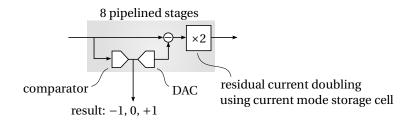


Channel overview

Charge amplifier

■ input range: 75 fC

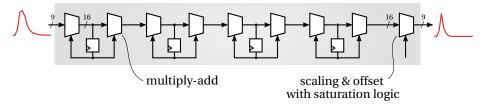
shaping time: 80 ns


■ noise: 800 e⁻ @ 30 pF

two amplifiers per channel selectable:

- positive polarity (4 mW)
- negative polarity (10 mW, not optimized)

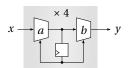
layout & schematics: modular, scalable


ADC

- current mode pipelined design
- 25 MHz sample rate, continuously running
- 9 bit nominal output
- resolution ≈ 8 bits
- 4.8 mW, rad-hard layout, $400 \times 300 \,\mu\text{m}^2$

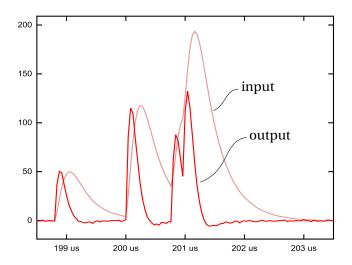
IIR Filter

- 16 bit internal resolution
- 6 bit coefficients
- freely programmable $(\frac{-32,...,31}{32})$
- instability excluded

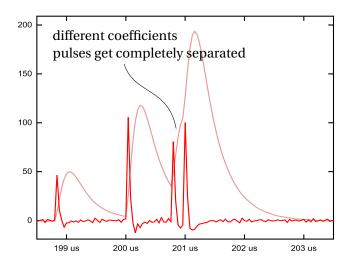


IIR Filter

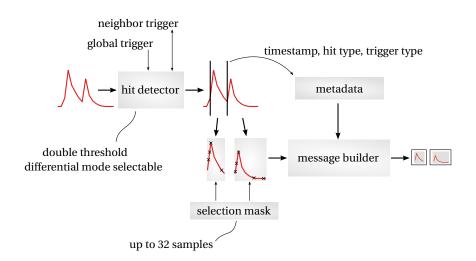
purpose: "tail cancellation"

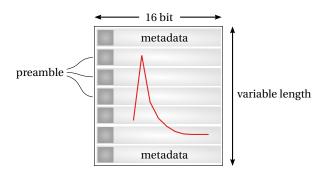

shorten pulses → reduce pileup/help hit logic

- model signal as sum of exponential terms:
 - $x_n \propto \sum w_i q_i^n$
- recursion: $y_n = x_n + bx_{n-1} + ay_{n-1}$
- each filter stage shifts relative weights: $w'_i = \frac{q_i + b}{q_i a} w_i$

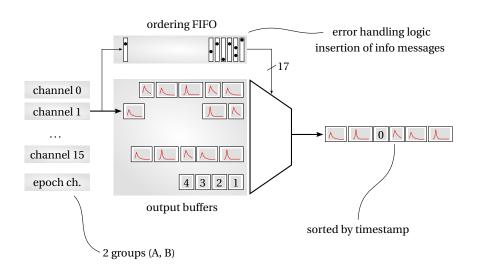


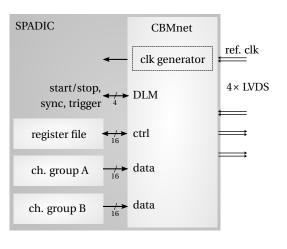
IIR filter: examples (simulation)



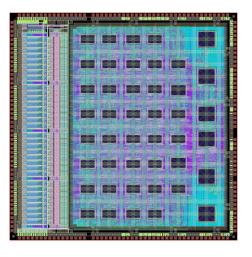

IIR filter: examples (simulation)

Hit logic


Message format

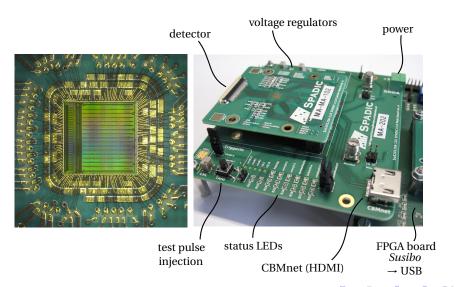

- every word has a preamble (4 or 1 bit)
- easy recovery of message stream

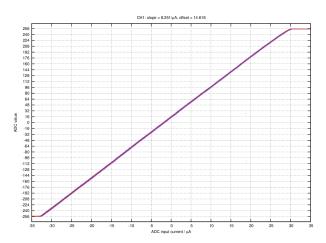
Message output multiplexing

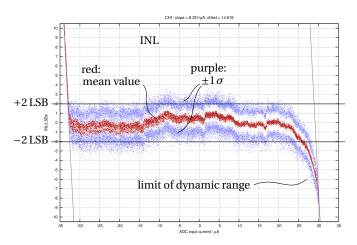


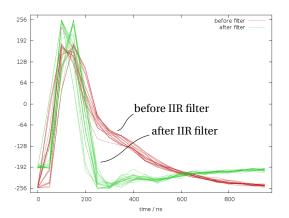
DAQ interface (CBMnet)

- error checking, retransmission
- deterministic latency messages (DLM)
- different traffic classes share single serial link
- 500 Mbit/s (DDR), 8b/10b encoded, LVDS (1 input, 2 outputs)

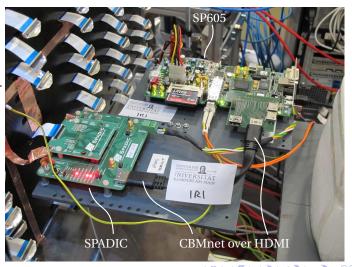

Layout view


- UMC 180 nm
- overall size: $5 \times 5 \,\mathrm{mm}^2$
- digital part:
 - $3.5 \times 4.5 \,\mathrm{mm}^2$
 - home-made standard cell library
 - 2.5 million transistors, 23k FF, 81k gates
 - 44 Faraday SRAMs
 - total wire length: 14.4 m
 - Power (200 MHz): 600 mW


Test setup


ADC curve: taken at 20 MHz sample rate, preliminary bias settings

ADC curve: taken at 20 MHz sample rate, preliminary bias settings


measured pulses (20 MHz sample rate)

 $CSA \rightarrow ADC \rightarrow IIR \ Filter \rightarrow \ hit \ logic \rightarrow \ message \ building \ \checkmark$

CBM beamtime October 2012 @ CERN: first time CBMnet readout

TRD prototype

Development status & lookout

- shown measurements done using auxiliary readout (bypassing CBMnet, limited capabilities)
- no major bugs discovered, everything so far tested works
- lab setup not yet CBMnet compatible → in progress
- full characterization (CSA, ADC) to be done, optimal settings to be found

Summary

SPADIC

complete system for charge pulse readout

- 32 channels
- self-triggered recording of whole pulse shapes (programmable selection mask)
- neighbor trigger, global trigger
- flexible digital signal processing
- time-sorted output message stream with notification of error conditions
- CBMnet: built-in DAQ connection with reliable data transmission and synchronization features using 4 LVDS pairs

Self triggered Pulse Amplification and Digitization asIC

http://spadic.uni-hd.de