Ion Backflow Studies for TPCs in high Rate Experiments

Markus Ball Physics Department E18 Technische Universität München

- Introduction
- Ion Backflow Suppression with GEMs
- The Setup at TUM
- IB Results for Ar/CO₂ (70/30) and Ne/CO₂ (90/10)

Outline

Conclusions and Outlook

Time Projection Chamber

Time Projection Chamber [D.R. Nygren et al., Phys. Today 31, 46 (1978)]

Combination of MWPC and Drift Chamber: 3-D tracking device

- long drift path (~m) in gas-filled volume ⇒ z coordinate
- MWPC + pads perpendicular to drift path ⇒ x,y coordinates

Advantages and Limitations of a TPC

Limitations:

- Calibration very demanding
- Drift distortions due to ion backflow
- Gating ⇒ low trigger rates

An (almost) ideal tracking detector:

- Large acceptance
- Large active volume
- Low material budget
- 3D hits ⇒ simple pattern recognition
- Extremely high particle densities
- Good momentum resolution
- Particle identification

Examples:

- STAR (420 cm × 400 cm)
- ALICE (500 cm × 500 cm)

Workshop on TPCs at high rate experiments, Hon 28.3601cm x 460 cm)

Advantages and Limitations of a TPC

Limitations:

- Calibration very demanding
- Drift distortions due to ion backflow
- Gating ⇒ low trigger rates ~ 1 kHz

2.0 (a) Gating grid closed 1.8 1.6 1.4 (L) 1.2 gating grid shielding grid 1.0 0.8 anode wires 0 0.6 cathode plane (b) Gating grid open 1.8 1.6 1.4 1 y (cm) 1.2 1.0 0.8 0.6 0.4 -0.6-0.4-0.20.2 0.4 0.6 0 x (cm)

Ion Backflow suppression of a MWPC with Gating grid ~ 10^{-5}

Technische Universität München

Advantages and Limitations of a TPC

Technische Universität München

Limitations:

- Calibration very demanding
- Drift distortions due to ion backflow
- Gating ⇒ low trigger rates ~ 1 kHz

Examples:

- STAR (420 cm × 400 cm)
- ALICE (500 cm × 500 cm)

Workshop on TPCs at high rate experiments, HenC28.96012m x 460 cm)

High rates: drift time > 1 / event rate \Rightarrow overlapping events

Goal: operate TPC continuously \Rightarrow analog event pipeline

- Introduction
- Ion Backflow Suppression with GEMs
- The Setup at TUM
- IB Results for Ar/CO₂ (70/30) and Ne/CO₂ (90/10)

Outline

Conclusions and Outlook

Gas Electron Multiplier (GEM)

- GEM: Gas Electron Multiplier [F. Sauli, NIM A386, 531 (1997)]
- Thin polyimide foil, typ. 50 μm
- Cu-clad on both sides, typ. 5 μm
- Photolithography: ~ 10⁴ holes/cm²
- Granularity 10 × higher than

MWPC

△U=300-500 V
⇒ high E-field: ~50 kV/cm
⇒ avalanche multiplication

Technische Universität München

GARFIELD/MAGBOLTZ simulation: two electrons arriving at GEM hole

- $E_{\text{hole}} \gg E_{\text{drift}} \Rightarrow$ most of the ions are collected on the top side of the GEM
- $E_{\text{trans}} > E_{\text{drift}} \Rightarrow$ electron extraction is improved

Ion Backflow - Definition

Ion Back-Flow

Ion Back-Flow is the ratio

lons arriving at the cathode

Electrons arriving at the anode

In the following presentation the ratio of currents

$$\mathsf{IB} = \frac{\mathit{I}_{\mathsf{drift}}}{\mathit{I}_{\mathsf{readout}}}$$

defines the ion backflow under the assumption, that fluctuations of currents are negligible

Current Limits on Ion Backflow

Ar/CO₂(70/30)

Ar/CO₂/CH₄(93/2/5

$V_{drift} = \omega \tau (ExB) + (\omega \tau)^2 (EB)B$ 0.006 0.014 Aachen/DESY 0.005 0.012 Effective Ion Feedback 0.004 0.01 10.0 800.0 800.0 900.0 0.003 0.002 ALIC Г 0.004 m 0.001 0.002 [T. Huber master thesis, TUM (2007)] [M. Killenberg et al., NIM A530, 251 (2004)] 0 0 3000 3500 4000 4500 5000 5500 6000 0.5 1.5 2 2.5 3 3.5 4.5 5 0 Induction Field [V/cm] B [T] GEM voltage settings Detector field settings GEM voltage settings Detector field settings GEM1 310 VEDrift $0.2 \, \rm kV \, cm^{-1}$ GEM1 330 V EDrift 0.25 kV cm⁻¹ GEM2 E_{T1} $6.00 \, \rm kV \, cm^{-1}$ 310 VGEM2 375 V E_{T1} 6.00 kV cm⁻¹ GEM3 $350\,\mathrm{V}$ ET2 $0.06 \, \rm kV \, cm^{-1}$ GEM3 E_{T2} 0.16 kV cm⁻¹ 450 V $8.00 \, \rm kV \, cm^{-1}$ EInd 5.00 kV cm⁻¹ E_{Ind}

Triple GEM with an IB=0.25 % realistic: ε=4 at G=2000

Space Charge Effects at ALICE

Technische Universität München

- Introduction
- Ion Backflow Suppression with GEMs
- The Setup at TUM
- IB Results for Ar/CO₂ (70/30) and Ne/CO₂ (90/10)

Outline

Conclusions and Outlook

Low ion backflow requires

- low drift field
- very asymmetric transfer fields
- highest amplification in 3rd GEM

Conflicting requirements:

- diffusion, attachment
- energy resolution
- stability

Standard Settings

GEM voltage setting	S	Detector field s	settings
GEM1	$400\mathrm{V}$	EDrift	$0.4\mathrm{kVcm^{-1}}$
GEM2	$372\mathrm{V}$	E _{T1}	$3.8\mathrm{kVcm^{-1}}$
GEM3	$322\mathrm{V}$	ET2	$3.8\mathrm{kVcm^{-1}}$
		EInd	$3.8\mathrm{kVcm^{-1}}$

Ion Backflow Settings (Aachen)

GEM voltage settings		Detector field settings	
GEM1	$310\mathrm{V}$	EDrift	$0.2\mathrm{kVcm^{-1}}$
GEM2	310 V	E _{T1}	$6.00 \rm kV cm^{-1}$
GEM3	$350\mathrm{V}$	ET2	$0.06 \rm kV cm^{-1}$
		EInd	$8.00\mathrm{kVcm^{-1}}$

Low ion backflow requires

- low drift field
- very asymmetric transfer fields
- highest amplification in 3rd GEM

Conflicting requirements:

- diffusion, attachment
- energy resolution
- stability

[S. Bachmann et al., NIM A479, 294 (2002)]

Standard Settings

GEM voltage settings		Detector field settings	
GEM1	$400\mathrm{V}$	EDrift	$0.4\mathrm{kVcm^{-1}}$
GEM2	$372\mathrm{V}$	E _{T1}	$3.8{\rm kVcm^{-1}}$
GEM3	$322\mathrm{V}$	ET2	$3.8{\rm kVcm^{-1}}$
		EInd	$3.8\mathrm{kVcm^{-1}}$

Ion Backflow Settings (Aachen)

GEM voltage settings		Detector field settings	
GEM1 GEM2 GEM3	310 V 310 V 350 V	E _{Drift} E _{T1} E _{T2} E _{Ind}	$\begin{array}{c} 0.2{\rm kVcm^{-1}}\\ 6.00{\rm kVcm^{-1}}\\ 0.06{\rm kVcm^{-1}}\\ 8.00{\rm kVcm^{-1}} \end{array}$

Low ion backflow requires

- low drift field
- very asymmetric transfer fields
- highest amplification in 3rd GEM

Conflicting requirements:

- diffusion, attachment
- energy resolution
- stability

TUM Setup - Detector

- Small drift volume of 3 mm
- Triple GEM structure
- Gas gain around 2000
- Strip readout (512 strips)
- X-Rays enter from side window to
- GEM voltage settings Detector field settings GEM1 $0.4 \,\mathrm{kV \, cm^{-1}}$ 400 VEDrift GEM2 $372 \,\mathrm{V}$ $3.8 \, {\rm kV \, cm^{-1}}$ E_{T1} GEM3 $3.8 \,\mathrm{kV \, cm^{-}}$ 322 VE_{T2} $3.8 \,\mathrm{kV \, cm^{-3}}$ EInd
- avoid conversion between the GEMs

TUM Setup - Detector

⁵⁵Fe with an activity of 37 MBq

- Well defined energy
 - ⇒ excellent for measurements of energy resolution and gain

Amptek Mini-X Au (4 W)

• High rates

⇒ high currents at the GEMs (µA),
 but energy spectrum is deteriorated
 by Bremsstrahlung

TUM Setup - Readouts

TUM Setup – Ampere Meters

Measurement Procedure:

- Analogue part with four measurement ranges: 10 nA, 1 μ A, 100 μ A, 10 mA
- Voltage drop on the shunt digitized by a 16 bit ADC
- 128 measurements are sampled (~ 8 s)
- Mean and sigma averaged out of these 128 samples
- Data wireless transmitted to a receiver connected to a pc

TUM Setup - Detector

- Sum of all currents has to be zero ⇒ good handle on systematics
- Every measurement has an negligible statistical uncertainty and a 10 %systematic uncertainty due to fluctuations on the x-ray current
- Offset in the order of some nA

TUM Setup - Detector

- Sum of all currents has to be zero ⇒ good handle on systematics
- Every measurement has an negligible statistical uncertainty + a 10 % systematic uncertainty due to fluctuations on the x-ray current
- Offset in the order of some nA

Ar/CO₂(70/30) with standard settings (not ion backflow optimized)

Ar/CO₂(70/30) with standard settings (not ion backflow optimized)

Ion Backflow – Rate Dependency

Ar/CO₂(70/30)

Agreement of IB for low rates between TUM and CERN measurements, but mechanism So far not understood (Space Charges ?).

[C. Garabatos, Y. Yamaguchi, CERN (2012)]

Fundamental difference drift length TUM (3mm) CERN (80 mm).

Mandatory changes for Ne/CO_{2} (90/10)

- Drift field is fixed to 0.4 kV·cm⁻¹
- Fields above 4 kV-cm⁻¹ start to produce gas amplification
- With 5.5 % IB and a gas gain 1000

 $n_{tot} = 55$ ions

GEM voltage settings		Detector field settings	
GEM1 GEM2 GEM3	225 V 235 V 285 V	E _{Drift} E _{T1} E _{T2} E _{Ind}	0.4 kV cm ⁻¹ 3.8 kV cm ⁻¹ 0.10.8 kV cm ⁻¹ 3.8 kV cm ⁻¹

Scale 1.00

GEM voltage settings		Detector field settings	
GEM1 GEM2 GEM3	225 V 235 V 285 V	E _{Drift} E _{T1} E _{T2} E _{Ind}	0.4 kV cm ⁻¹ 3.8 kV cm ⁻¹ 0.10.8 kV cm ⁻¹ 3.8 kV cm ⁻¹

Technische Universität München

GEM voltage settings		Detector field settings	
GEM1 GEM2 GEM3	225 V 235 V 285 V	E _{Drift} E _{T1} E _{T2} E _{Ind}	0.4 kV cm ⁻¹ 3.8 kV cm ⁻¹ 0.10.8 kV cm ⁻¹ 3.8 kV cm ⁻¹

Further Ideas of IB suppression

 $IB = 2.7 \cdot 10^{-5}!$

[A. Lyashenko et al., NIM A 598 (2009) 116-120]

Advantage

⇒ problem of IB completely eliminated

Disadvantages

⇒ e- transparency might suffer, so far not applicable to large size

- IB for a conventional triple GEM stack and given boundary conditions factor 5-10 too high (Ne/CO₂ 90/10)
- Conventional approach: Small modifications
- > Use extraction fields slightly above 4 kV/cm
- > Use Ne/CO₂/N₂ (90/10/5) ⇒ smaller Townsend Coefficient
- > Use GEM with different aspect ratio (smaller and larger holes)
- > Use 4th GEM
- Alternative approach: COBRA or MHSP or ?

(see Taku Gunji's slides in Rob Veenhofs talk)

• Systematics have to be understood (rate dependency)

Outlook

Technische Universität München

 2013: pPb and Pbp initial state effects, shadowing.

2013-14: LHC Long Shutdown 1 (LS1)

 2015-17: FULL ENERGY !! pp @ 7 TeV, PbPb @ √sNN = 5.5 TeV

2018: LHC Long Shutdown 2

• ≥ 2019: HIGH LUMINOSITY 50 kHz PbPb collisions

ALICE UPGRADES

- New vertex detectors
- Faster readout, high level triggers...
- TPC with continuous readout ...

Upgrade of the ALICE Experiment

Thank you for your attention!

Backup Slides

TUM Setup – Ampere Meters I

- 1. HV in
- 2. HV out
- 3. Non inverting operational amplifier
- . 1. 16-bit ADC
- 2. Microcontroller
- 3. Wireless transceiver
- 4. Read switch

ALICE Upgrade during LS2

- TPC needs to cope with high rates
 - 2 MHz in p+p, 50 kHz in Pb+Pb collisions ⇒ 100 × higher than present
 - No gating and continuous readout
- GEMs as replacement for MWPC
 - Rate capability ok
 - Ion backflow suppression critical !!!
 - Operation at lower gain ~ 1000 due to fast electron signal + low noise
- Issues for Upgrade
 - dE/dx resolution for PID ⇒ PS test beam end of 2012
 - Stability under LHC conditions ⇒ just finished in Jan/Feb 2013
 - Gain stability > laboratory measurements of charging up, long-term
 - Ion backflow > laboratory measurements, simulations
 - New front-end and readout electronics

The ALICE TPC

Workshop on TPCs at high rate experiments , Bonn 28.02.2013

[L. Musa, CERN]

ALICE IROC Prototype

- 3 large-size GEM foils: single-mask
- 18 sectors (top side), ~ 100cm2 each
- bias resistors 10/1MO
- 2mm frames glued on bottom side
- spacer grid: 400mm thickness
- additional frame for induction gap: 4mm

Single-mask GEM Foils

ALICE IROC with GEMs

Technische Universität München

IROC mounted inside field cage

- Drift length 11.5 cm, 400 V/cm
- Gas Ne/CO2 (90/10)
- 64 rows with pads
- FEE: PCA16 / ALTRO (LCTPC)
- ENC: 500 600 e-

Test in flush box with "cathode"

IROC Beam Test at CERNPS

- p, π±, e± beam, 1/2/3/6 GeV/c
- 2000 particles / 0.5s
- Cherenkov and Pb glass detectors for external reference PID
- Goal: measure separation power for different GEM settings

dE/dx Results

dE/dx resolution of 1 GeV electrons and pions for different IBF settings and as a function of gain

dE/dx resolution for $e^- \sim 9.5$ % for 10 %

dE/dx separation of 1 GeV electrons and pions for different IBF settings and as a function of gain

dE/dx Results

dE/dx-resolution achieved with the GEM IROC with 64 rows looks promising to satisfy the performance for the full TPC

- An IROC has been set up with a triple GEM readout
- Physics Performance run in the PS with 2000 channels from LC TPC
- Measurement of the Specific Energy Loss (dE/dx) quite successful (e⁻ and $\pi^- \sim 9.5 10$ %)
- Close to the current dE/dx limit of ALICE TPC (even in IB mode)
- Upcoming TDR for the TPC upgrade including GEM-Implementation, IB as well as Detector Performance planned for August this year

Still a lot of work to do !!!

Backup Slides

Signal-to-Noise Ratio

Pattern Recognition

Pattern Recognition

HV scheme of the GEM stack

The GEM Stack (with three dead sectors)

Noise Measurement

Four channels not connected To measure the electronic noise

- 42 front-end cards
- 12768 readout channels
- 16 20 MHz sampling
- 1 ADC channel ~ 400 e⁻ ENC
- Average noise ~ 700 e⁻ ENC

Front End Electronics

FE cards based on AFTER chip (T2K)

- 10 50 MHz sampling
- Noise: ~ 700 e⁻ ENC on detector
- 100 ns 2 ms shaping time
- ~ 0.8 W/chip
- ~ 2.5 ms dead-time
- 511 ring-buffer cells
- Both signal polarities
- Tunable dynamic range
- 72 (64) input channels

P. Baron et al, IEEE Trans Nucl Sci 55 (208)

Readout scheme

GEM-Stability

Temperature Measurements

