GEM simulations:

Impact of space and surface charge

Taku Gunji

Center for nuclear study, university of Tokyo, Japan

Rob Veenhof

RD51 collaboration and Uludağ university, Bursa, Turkey

Runge-Kutta-Fehlberg integration

Example (Harp): $E \times B$ effect in an enlarged \aleph read-out cell.

Why molecular level simulation

Recall:

Mean free path of electrons in Ar: 2-5 μ m,

diffusion: ~80 µm for 1 mm.

Compare with:

- Micromegas mesh pitch: 63.5 μm
- GEM polyimide thickness: 50 μm
- Micromegas wire thickness: 18 μm
- GEM conductor thickmess: 5 μm
- Hence:
 - mean free path approaches small structural elements;
 - diffusion is not likely to be Gaussian;
 - such devices should be treated at a molecular level.

Flux vs microscopic ?

- A diffusion-free flux argument does not reproduce the data ...
- but the microscopic approach works.

Field calculations: finite elements.

Thin-wire approximation ?

The thin-wire approximation is usual in wire chambers – but is not adequate here.

Field calculations: neBEM.

Gain calculations in a pristine GEM

- Calculations predict that G_{tot} and G_{eff} rise with increasing inner hole diameter.
- G_{eff} rises mainly because the losses of incoming electrons diminish;
- G_{tot} rises because the exit electrode becomes more accessible.

HBD data

Measurements for 2 triple GEMs with different hole shape shows that smaller holes lead to *larger* gain !

[W. Anderson *et al.* 10.1109/NSSMIC.2007.4437147]

GEMs of various manufacturers

Surface charge

GEMs violate the 1st law of gas-based detectors: active gas must not be in contact with an insulator.

Electrons and ions will therefore land on the insulating material.

Polyimide as used in GEMs is an extraordinarily good insulator: once on the surface, charge stays there.

GEMs with surface charge

- The polyimide surface area inside the holes is sliced.
- Start: uncharged GEM;
- iterate:
 - simulate avalanches;
 - histogram electron and ion deposition patterns;
 - add surface charges and recalculate the field;
- convergence when electron and ion deposits balance.

$V_{\text{GEM}} = 220 \text{ V} \text{ and } V_{\text{GEM}} = 300 \text{ V}$

$V_{\text{GEM}} = 400 \text{ V} \text{ and } V_{\text{GEM}} = 500 \text{ V}$

GEM surface charge – summary

Gain (effective and total) is modified by charging-up.

Hole shape:

- charge-induced increase is strongest in tapered holes;
- gain is virtually stable in cylindric holes;
- dependence on hole shape is non-linear.

Voltage:

- effect increases with voltage.
- Although the absolute gain is not yet understood, simulations do reproduce charging-up effects.

Ion back flow and space charge

Alice plans using a triple GEM for TPC read-out with:
ion back flow < 0.5 % (< 0.25 % in some sources)
effective gain 2000

https://cdsweb.cern.ch/record/1475243/files/LHCC-I-022.pdf

IBF Measurements at CERN

- Systematic measurements at RD51 lab. in CERN.
 - Field dependence (ΔV_{GEM} , T1, T2, Induction)
 - Rate, x-ray position dependence (charge current density)

First comparison of IBF between real and simulations

- Simulation (Penning factor) is tuned to reproduce the gain.
- However, IBF in simulation doesn't agree with the measurements.
- Strong dependence on V_{GEM} in the measurements

More results from the measurements

- Rate, Energy (target), drift-space (3 mm or 80 mm) dependence
- Clear rate and drift-space dependence of IBF.
- Indicating space-charge effect (\propto rate \times gain \times seed) to IBF...

Space-charge simulations: Method

- \blacktriangleright Slice the space in drift direction by 100 $\mu{\rm m}$
- Uniformly distribute ions in space $z \in [Z, Z + 100 \mu m]$
- Calculate the field by ANSYS and evaluate gain/IBF by Garfield++
- Example of the field around GEM1 with N_{ions}=0, 10⁵, 10⁶ with E_{drift}=0.4kV/cm. less IBF with huge N_{ions}?

Space-charge above a single GEM

Drift plane

GEM1

► Ions at $z \in [0, 100 \,\mu\text{m}]$ above the GEM; $E_{dr} = 400 \,\text{V/cm}; \,\text{Ar/CO}_2 \,70/30;$

Gain: Does not depend on the ion density;

▶ IBF: Onset of decrease at ~10⁴ ions/hole,

Space-charge above GEM

- ▶ lons at $z \in [100, 200 \ \mu \text{m}]$ (left) and $z \in [500, 600 \ \mu \text{m}]$ (right) above GEM1. N_{ions} : from 0 to 2×10^4
- For $N_{ions} \ge 10^4$, IBF gets smaller (×10) with more N_{ions} .
- N_{ions} cannot be 4×10⁴. In this case, the field is reverted (no electrons going into GEM).

Space-charge above a double GEM

Space-charge above GEM2

- ▶ lons at $z \in [100, 200 \ \mu m]$ and $z \in [500, 600 \ \mu m]$ above GEM2. N_{ions} : from 0 to 1.5×10^5
- ► IBF changes for N_{ions} ≥ 5×10⁴. Onset depends on underlying field.
- N_{ions} cannot be 4×10⁵. The field is reverted (no electrons going into GEM).

GEM – time scale

Avalanches take a few ns: http://cern.ch/garfieldpp/examples/gemgain
Ion velocity at 3 kV/cm: Ar: ~20 µs/mm, Ne: ~8 µs/mm

A little more dynamical simulations

- Look at the spacial ion profile along drift direction for each 10µsec after avalanche.
 - Ion profile from 10μ sec to 40 μ sec (left) and from 60μ sec to 300μ sec (right) after the avalanche (at the gain of 10000)
 - lons are swept sway from T1 quickly (3kV/cm) and stays above GEM1 due to low field (0.4kV/cm)
- No transverse profile is taken into account.

Ion Profile

- Summed up the ion profile at each time step and make ion profile corresponding for various rate.
 - ► If rate/hole = 100kHz, ion profiles for each 10µsec are summed up.
 - Ion profile under 100kHz (left) and 10kHz (right) avalanches at the gain =1000 and the number of seeds/hole (N_{seed})=1
- Scale this profile according to gain and N_{seed}

Ion Back Flow vs. Rate/Seed

- ▶ IBF vs. Rate and $N_{seed} = (3, 10, 25)$ at Gain = 115, 350, 900
- Clear rate dependence and dependence is much larger for higher gain
- IBF gets smaller with higher rate and high gain
 - Rate at CERN \sim 25kHz. N_{seed} = 20-40. Gain \sim 2000
 - Large effect of space-charge to IBF
- More dynamical and iterative simulations will be done!!

Motivation

- To search for the optimal solutions for the suppression of IBF
- For example, 0.25% of IBF at gain=2000 (ALICE GEM-TPC upgrade)
- ► What have been studied so far.
 - ► 3 GEM configurations under Ar/CO₂ and Ne/CO₂(/N₂)
 - ► 4 GEM configurations under Ne/CO₂(/N₂)
 - Hole Alignment Dependence
 - Conical GEMs
 - Extoic GEMs (Flower-GEM, COBRA-GEM)

Diffusion of Ar⁺ in Ar and Ne⁺ in Ne

Little experimental data, in particular at low fields. extrapolated from higher fields: ~10 µm for 1 mm

Hole Alignment

- ▶ IBF with 3 GEMs. Ne/CO₂=(90/10).
- IBF vs. hole distance between GEM1 and GEM2.
- Strong alignment dependence (×10) for $E_{T1} \ge 2-4$ kV/cm.
- No alignment dependence for E_{T1} ~1 kV/cm. But IBF is worse.

3 GEM configurations

- ► 3 GEM configurations. Ar/CO₂=(70/30)
- GEM2 is mis-aligned with respect to GEM1 and GEM3.

.

٠

Drift p

GEM1

GEM2

GEM3

X-rav

- ► $V_{GEM1} = 260, V_{GEM2} = 360, V_{GEM3} = 460$
- ▶ 0.3-0.5% of IBF with high E_{T1 (GEM1-GEM2)} ~ 6kV/cm and low E_{T2 (GEM2-GEM3)} ~ 0.5kV/cm.

The mediæval solution ... arrow slits !

Conical GEMs

- Conical GEMs (different hole size on upper and bottom electrode)
- ▶ Left: Field of GEM1 in case Narrow(N) \rightarrow Wide(W)
- ▶ Right: Field of GEM1 in case Wide(W)→Narrow(N)
- ▶ N→W is promissing. Better extraction of electrons and IBF.

IBF with Conical GEMs

- IBF with conical GEMs with different hole size
 - *E*_{T1} = 6kV/cm, *E*_{T2} = 0.5kV/cm. Ar/CO₂=(70/30). GEM2 is mis-aligned.
 - GEM1 upper hole size: 40-70 μ m. bottom hole size: 70 μ m
 - GEM3 upper hole size: 30-100 μ m. bottom hole size: 70 μ m
- > \times 2-3 improvement of IBF with 40 μ m/70 μ m GEM1 and 40-70 μ m/70 μ m GEM3.

Exotic GEMs

- IBF simulations with Flower-GEM and COBRA-GEM
- 0.2% of IBF is achievable with Flower-GEM and 3 COBRA-GEMs
 - Need to control geometry for the Flower GEM
 - Less sensitive to the COBRA-GEM for the alignment.

3 GEM configurations in Ne/CO_2

▶ 3 GEMs under Ne/CO₂=(90/10). GEM2 is mis-aligned.

17/24

- E_{T1} cannot go higher than 4kV/cm.
 - Townsend: $\sim 14/cm$ at 6kV/cm. $\times 7$ gain in 2mm.
 - ▶ Adding N₂? 14/cm→4/cm at 6kV/cm with 5% N₂
- ▶ 1-2% of IBF with $E_{T1} \sim 4$ kV/cm and $E_{T2} \sim 0.5$ kV/cm.

4 GEM configurations in Ne/CO₂

- ▶ 4 GEM configuration under Ne/CO₂. E_{T1}=4kV/cm
- GEM2 and GEM4 are mis-aligned.
- E_{T2} and E_{T3} scan.
- ×2-3 improvement with 4 GEM configurations. 0.5% of IBF can be achievable with low E_{T2} and high E_{T3}.

18/24

- More dynamical simulations for space-charge effects.
- Search for the optimal solutions for IBF
 - Combination of GEMs with different pitch, hole size, and hole shape (conical)
 - For example, opaque and conical GEM for GEM1 (high E_{T1}).
 - We have to rely on the ramdom alignment.
 - Need to check uniformity of gain and IBF.

GEM space charge – summary

- Space charge between GEMs pushes ions towards the cathode ("upper") GEM electrode. This reduces the ion back-flow.
- The trend of the measured rate dependence of ion back-flow is reproduced by simulations.
- By a stroke of luck, higher rates lead to improved ion backflow reduction.

Conical GEMs and misalignment can reduce ion back-flow.

Conclusions

- Microscopic simulations, although time consuming, are capable of reproducing e.g. the transparency of Micromegas meshes.
- GEMs have insulating material in contact with active gas. As a result, the insulator collects charge and the surface charges modify the detector behaviour.
- Evacuation of ions from multiple GEMs is sufficiently slow for space charge effects to become noticeable at high rates. This modifies the ion back-flow rate.