
C++ School 11-15 November, DESY

Our Small C++ Project A simple MC generator to
calculate Z production at Born
level

Cross section
The Born level cross section is phase space integral of the matrix elements and the
observable and it is convoluted to the parton distribution functions (PDFs):

The event is an array of momenta and flavor of the incoming and outgoing partons.

� =

Z 1

0
d⌘a

Z 1

0
d⌘b

Z
d�(⌘a, ⌘b; {p, f}m)

⇥ fa/A(⌘a, µ
2)fb/B(⌘b, µ

2)

⇥ |M({p, f}m)|2 F ({p, f}m)

Phase space

PDFs

Matrix element Observables

Need a Lorentz vector

Lorentz vector: Three vector
Lorentz vector has 3 space-like and 1 time-like component. The space-like part is the
usual three vector with X, Y, Z component. Thus first we want to define a class that
represents three vectors.
class threevector	
{	
protected:	
 // data member	
 double _M_x, _M_y, _M_z;	
 	
 // constructors	
 threevector(const threevector&) = default; // defaulted copy constructor 	
 // elements access	
 	
 // aritmethic operators	
 // +=, -=, *=, /=	
 	
 double mag2 () const { return _M_x*_M_x + _M_y*_M_y + _M_z*_M_z;}	
 double perp2() const { return _M_x*_M_x + _M_y*_M_y;}	
 	
 // magnitude and the transverse component	
 double mag () const { return std::sqrt(this -> mag2());}	
 double perp() const { return std::sqrt(this -> perp2());}	
 	
 // azimuth and polar angles	
 double phi() const { return _M_x == 0.0 && _M_y == 0.0 ? 0.0 : std::atan2(_M_y,_M_x);}	
 	
 double theta() const {	
 double p = this -> perp();	
 return p == 0.0 && _M_z == 0.0 ? 0.0 : std::atan2(p, _M_z);	
 }	
};	

• Write the header file
threevector.h!

• We don’t need .cc file
since every functions
are simple and they
can be inline.!

• Play with, try the
arithmetic operators
with simple examples.

Three vector

#include <iostream>	
#include "threevector.h"	
!
using namespace std;	
!
!
int main()	
{	
 threevector a(1.0,2.0,3.0), b(5.0,6.0,7.0), c;	
 	
 c =a+b;	
 cout<<"c = a+b = "<<c<<endl;	
!
 c = a-b;	
 cout<<"c = a+b = "<<c<<endl;	
 cout<<"a*b = "<<a*b<<c<<endl;	
 cout<<"a*2.0 = "<<a*2.0<<c<<endl;	
 cout<<"a/2.0 = "<<a/2.0<<c<<endl;	
 	
 return 0;	
}	

At the end of the day you should be able to do something like this:

class threevector (one solution)
#ifndef __SCHOOL_THREEVECTOR_H__	
#define __SCHOOL_THREEVECTOR_H__ 1	
!
// Standard includes	
#include <cmath>	
#include <iostream>	
!
namespace school {	
 	
 class threevector	
 {	
 protected:	
 // data member	
 double _M_x, _M_y, _M_z;	
 	
 //.....	
 }; //class threevector	
} // namespace school	
#endif

• Class threvector with three double
variables as data member (x, y, z).!

• They are in protected field. Available
for the inherited classes but not
visible from outside

class threevector (one solution)
class threevector	
{	
protected:	
 // data members	
 double _M_x, _M_y, _M_z;	
 	
public:	
 // constructors	
 threevector(double x = 0.0, double y=0.0, double z=0.0) 	
 : _M_x(x), _M_y(y), _M_z(z) {}	
 	
 // copy	
 threevector(const threevector&) = default;	
 threevector& operator=(const threevector&) = default;	
 	
 // destructor	
 ~threevector() = default;	
!
 // ...	
};	

• The default constructor
creates null vector. !

• We have one no trivial
constructor.!

• Copy operators and
destructor can be
defaulted, since we
have simple data
members (no dynamic
memory allocation in
the class).

class threevector (one solution)
class threevector	
{	
protected:	
 // data member	
 double _M_x, _M_y, _M_z;	
 	
public:	
 // elements access	
 const double& X() const { return _M_x;}	
 const double& Y() const { return _M_y;}	
 const double& Z() const { return _M_z;}	
 	
 double& X() { return _M_x;}	
 double& Y() { return _M_y;}	
 double& Z() { return _M_z;}	
!
 // ...	
};	

• Since the data members are
protected we need functions to
get access to the elements.!

• Constant operators are READ-
OLNY operations.!

• Non-constant operators can
READ-WRITE.

threvector v(1.,2.,3.);	
!
v.X() = 12.0; // changes v._M_x to 12.0	
!

class threevector (one solution)
class threevector	
{	
protected:	
 // data member	
 double _M_x, _M_y, _M_z;	
 	
public:	
 // computed assignments	
 threevector& operator+=(const threevector& a) {	
 _M_x += a._M_x; _M_y += a._M_y; _M_z += a._M_z;	
 return *this;	
 }	
 	
 threevector& operator*=(double a) {	
 _M_x *= a; _M_y *= a; _M_z *= a;	
 return *this;	
 }	
 	
 // similarly the operators -= and /=	
};

• The computed assignment
operators are member
function. The left argument
is always the current object
(*this) that owns the
operator.!

• They returns a reference of
the object itself. It allows
something like this:

threevector a(1,2,3),b(3,2,1);	
threevector c = (a+=b);

threevector a(1,2,3),b(3,2,1);	
a+=b;	
threevector c = a;

It is equivalent to

class threevector (one solution)
inline	
threevector operator+(const threevector& a, const threevector& b) {	
 return threevector(a) += b;	
}	
!
inline	
threevector operator*(const threevector& a, double b) {	
 return threevector(a) *= b;	
}	
!
// I/O operations	
inline	
std::ostream& operator<<(std::ostream& os, const threevector& q) {	
 return os<<"("<<q.X()<<","<<q.Y()<<","<<q.Z()<<")";	
}	

• Operators outside of the class definition are usually binary operators, like the a+b
operator.!

• They always return value or reference to one of the argument. Never return reference
to local or temporary variable.

class threevector (one solution)
inline	
threevector operator+(const threevector& a, const threevector& b) {	
 return threevector(a) += b;	
}	

inline	
threevector operator+(const threevector& a, const threevector& b) 	
{	
 threevector tmp(a);	
 tmp += b;	
 return tmp;	
}	

This is equivalent to

Lorentz vector
Lorentz vector also has time-like component. Define a class inherited from three vector.
Define all the arithmetic operators plus some more functions
class lorentzvector // inherited from threevector	
{	
 	
 // member functions	
 double plus () const { return _M_t + _M_z;}	
 double minus() const { return _M_t - _M_z;}	
 double rapidity() const { return 0.5*std::log(plus()/minus());}	
 double prapidity() const { return -std::log(std::tan(0.5*theta()));}	
 double mag2() const { return _M_t*_M_t - threevector::mag2();}	
 	
 threevector boostVector() const {	
 return threevector(*this) /= _M_t;	
 }	
 	
 // Lorentz boost	
 void boost(double, double, double);	
 void boost(const threevector& a) { boost(a.X(), a.Y(), a.Z());}	
};	

• Write the header file
lorentzvector.h!

• The boost(…) function is
implemented in the
lorentzvector.cc file.!

• Play with, try the
arithmetic operators with
simple examples.

http://lorentzvector.cc

Event record
#ifndef __SCHOOL_EVENT_H__	
#define __SCHOOL_EVENT_H__ 1	!
#include "lorentzvector.h"	!
// std includes	
#include <vector>	!
namespace school {	!
 // flavors	
 enum flavor_type {nuebar = -12, positron,	
 topbar=-6, bottombar, charmbar, strangebar, upbar, downbar, 	
 gluon, up, down, strange, charm, bottom, top,	
 electron = 11, nue	
 };	!
 // structure for representing incoming and outgoing particles	
 struct particle {	
 // flavor of the particle	
 int flavor;	
 	
 // momentum of the particle	
 lorentzvector momentum;	
 };	!
 	
 class event	
 {	
 public:	
 // ….	
 };	
} // namespace school	
#endif

• Protect your header file to avoid
including it more than one.!

• We have to label the flavors, use
enum.!

• The particle can be represented by
its momenta and flavor.!

• The event record is an array of
particles. !

• Indexing:  
-1, 0 => incomings 
1,2,…,n => outgoings

Event record
 class event	
 {	
 public:	
 double xa;	
 double xb;	
 	
 private:	
 std::vector<particle> _M_array;	
 	
 public:	
 // constructor 	
 //(we have always 2 incomming + n outgoing)	
 explicit event(unsigned int n=1u);	
 	
 // copy	
 event(const event&) = default;	
 event& operator=(const event&) = default;	
 	
 // dectructor	
 ~event() = default;	
 };

• Momentum fraction of the
incoming partons.!

• Array of particles!

• Constructors and destructor.!

• Indexing:  
-1, 0 => incomings 
1,2,…,n => outgoings

Event record
 class event	
 {	
 public:	
 double xa;	
 double xb;	
 	
 private:	
 std::vector<particle> _M_array;	
 	
 public:	
 // element access	
 particle& operator[](int k);	
 	
 const particle& operator[](int k) const;	
 };	

• Element access by subscript
operators.!

• Constant and non-constant
access.!

• Indexing:  
-1, 0 => incomings 
1,2,…,n => outgoings

Event record
 class event	
 {	
 public:	
 // iterators	
 typedef std::vector<particle> _Base;	
 typedef _Base::iterator iterator;	
 typedef _Base::const_iterator const_iterator;	
 	
 iterator begin();	
 const_iterator begin() const;	
!
 iterator end();	
 const_iterator end() const;	
 	
 // resize	
 void resize(unsigned int n);	
 	
 // structural information	
 unsigned int number_of_outgoings() const;	
 };	

• Element access by iterators!

• Number of the outgoing
particles.

Good
 lu

ck!
!!

