Nonthermal cosmic neutrino background

Michael Ratz

based on Phys.Rev. D92 (2015) no.12, 123006 (arXiv:1509.00481) with: Mu–Chun Chen (UCI) and Andreas Trautner (Bonn)

(some slides stolen from Andreas' talks)

&

Kevork Abazajian, Mu-Chun Chen & M.R. (in preparation)

LAUNCH Workshop

September 14 2017

there is plenty of evidence for photons coming from the sun

 $\ensuremath{\,^{\scriptsize \hbox{\tiny CM}}}$ there is plenty of evidence for photons coming from the sun

solar vs: flux ~
$$\frac{10^{11}}{\text{cm}^2 \text{ sec}}$$

there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$$

there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots$$
 seen in various experiments

CMB: relic photons

 $\ensuremath{\,^{\scriptsize \hbox{\tiny \ensuremath{\mathbb{R}}}}}$ there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots$$
 seen in various experiments

CMB: relic photons

relic vs: flux
$$\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}}$$

 $\ensuremath{\,^{\scriptsize \hbox{\tiny \ensuremath{\mathbb{R}}}}}$ there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$$

CMB: relic photons

relic vs: flux
$$\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$$

there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots$$
 seen in various experiments

CMB: relic photons

relic vs: flux
$$\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$$

with common knowledge: there are more photons than neutrinos in our universe ($n_γ$ ≈ 412 cm⁻³ & $n_ν$ ≈ 336 cm⁻³)

there is plenty of evidence for photons coming from the sun

solar vs: flux
$$\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots$$
 seen in various experiments

CMB: relic photons

relic vs: flux
$$\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$$

w common knowledge: there are more photons than neutrinos in our universe ($n_γ$ ≈ 412 cm⁻³ & $n_γ$ ≈ 336 cm⁻³)

main message of this talk:

there might be more neutrinos than photons!

Standard picture

Standard picture

• CMB (measured) $T_{\gamma} \simeq 2.73 \text{ K} \simeq 2.35 \cdot 10^{-4} \text{ eV}$ $n_{\gamma} \simeq 412 \text{ cm}^{-3}$

Standard picture

- CMB (measured) $T_{\gamma} \simeq 2.73 \text{ K} \simeq 2.35 \cdot 10^{-4} \text{ eV}$ $n_{\gamma} \simeq 412 \text{ cm}^{-3}$
- standard CvB (predicted) $T_{\nu_{\text{th}}} \simeq T_{\gamma} \cdot (4/11)^{1/3} \simeq 1.95 \text{ K}$ $n_{\nu_{\text{th}}} \sim 336 \text{ cm}^{-3}$

Standard picture

eff

- CMB (measured) $T_{\gamma} \simeq 2.73 \,\mathrm{K} \simeq 2.35 \cdot 10^{-4} \,\mathrm{eV}$ $n_{\gamma} \simeq 412 \,\mathrm{cm}^{-3}$
- standard CvB (predicted) $T_{\nu_{\rm th}} \simeq T_{\gamma} \cdot (4/11)^{1/3} \simeq 1.95 \, {\rm K}$ $n_{\rm V_{th}} \sim 336 \, {\rm cm}^{-3}$ Ade et al. (2016)

•
$$N_{\rm eff} = 3.2 \pm 0.5$$

 σ_8 : present linear-theory mass dispersion at a

scale 8 h⁻¹ Mpc

Standard picture

Standard picture + nonthermal Dirac neutrinos

Dirac neutrinos in the early universe

Dirac neutrinos get their mass from the Yukawa coupling

$$\mathscr{L}_{\nu} = Y_{\nu}^{ij} \left(\frac{\overline{e}_{\mathrm{L}}^{i}}{\overline{v}_{\mathrm{L}}^{i}} \right) \cdot \widetilde{H} \, \nu_{\mathrm{R}}{}^{j} + \mathrm{h.c.}$$

■ $m_{\nu} \leq 0.1$ eV \sim singular values of $Y_{\nu} \leq 10^{-12}$

Dirac neutrinos in the early universe

Dirac neutrinos get their mass from the Yukawa coupling

$$\mathscr{L}_{\nu} = Y_{\nu}^{ij} \left(\frac{\overline{e}_{\mathrm{L}}^{i}}{\overline{\nu}_{\mathrm{L}}^{i}} \right) \cdot \widetilde{H} \, \nu_{\mathrm{R}}{}^{j} + \mathrm{h.c.}$$

- $\Gamma_{\nu_{\rm R}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R

- $\Gamma_{\nu_{\rm R}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R
- \mathbb{R} assume that there is a primordial nonthermal abundance of $\nu_{\rm R}$

- \square $\Gamma_{\nu_{\rm R}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R
- \mathbb{I} assume that there is a primordial nonthermal abundance of ν_R
- most extreme possibility: degenerate Fermi gas fill $v_{\rm R}$ states from the bottom up

$$n_{\nu_{\rm R}} = \frac{g}{6\pi^2} \varepsilon_{\rm F}^3$$

$$\rho_{\nu_{\rm R}} = \frac{g}{8\pi^2} \varepsilon_{\rm F}^4$$

$$g = 2 \text{ for spin-1/2 fermion}$$

- $\Gamma_{\nu_{\rm R}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R
- $^{\tiny \hbox{\tiny IMS}}$ assume that there is a primordial nonthermal abundance of ν_R
- most extreme possibility: degenerate Fermi gas fill v_R states from the bottom up

c

Evolution of the nonthermal background

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm RH}} T^3$$
$$\xi := \varepsilon_{\rm F}/T_{\rm RH}$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\gamma}} = \frac{g\xi^3}{12\,\zeta(3)} \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})} \quad \& \quad \Delta N_{\rm eff}^{(\nu_{\rm R})} = \frac{8}{7} \frac{30}{8\pi^4} \frac{g\xi^4}{2} \left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm RH})}\right)^{4/3}$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\gamma}} = \frac{g\xi^3}{12\,\zeta(3)} \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})} \& \Delta N_{\rm eff}^{(\nu_{\rm R})} = \frac{8}{7} \frac{30}{8\pi^4} \frac{g\xi^4}{2} \left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm RH})}\right)^{4/3}$$

maximal number of nonthermal neutrinos:

$$n_{\nu_{\rm R}}(T_{\gamma}) = 0.53 n_{\gamma} \left(\frac{\Delta N_{\rm eff}^{(\nu_{\rm R})}}{0.7}\right)^{3/4} \lesssim 217 \,{\rm cm}^{-3}$$

Evolution of the nonthermal background

$$n_{\nu_{\rm R}}(T) = \frac{g\xi^3}{6\pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} T^3$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\gamma}} = \frac{g\xi^3}{12\,\zeta(3)} \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})} \& \Delta N_{\rm eff}^{(\nu_{\rm R})} = \frac{8}{7} \frac{30}{8\pi^4} \frac{g\xi^4}{2} \left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm RH})}\right)^{4/3}$$

Nonthermal cosmic neutrino background

Detection of relic neutrinos

How to look for relic neutrinos

How to look for relic neutrinos

Direct detection of CvB on earth

Direct detection of CvB on earth

reproposal: capture ν 's with tritium ³H

Weinberg (1962)

```
\beta decay: <sup>3</sup>H \rightarrow <sup>3</sup>He<sup>+</sup> + e<sup>-</sup> + \overline{\nu}_{e}
```

Nonthermal cosmic neutrino background

Detection of relic neutrinos

Direct detection of CvB on earth

Direct detection of CvB on earth

reproposal: capture ν 's with tritium ³H

Weinberg (1962)

Nonthermal cosmic neutrino background

Detection of relic neutrinos

 \square Direct detection of CvB on earth

Direct detection of CvB on earth

riangleright proposal: capture ν 's with tritium ${}^{3}H$

Weinberg (1962)

$${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + \overline{\nu}_{e}$$

 $\nu_{e}^{\prime} + {}^{3}H \rightarrow {}^{3}He^{+} + e^{-} \leftarrow \text{measure spectrum}$

•
$$\langle E_{\rm kin}^{\nu_{\rm th}} \rangle_{\rm today} \approx 1.7 \cdot 10^{-4} \, {\rm eV}$$

- $\Delta m_{12}^2 \approx 7.5 \cdot 10^{-5} \text{ eV}^2$ $\Delta m_{13}^2 \approx 2.5 \cdot 10^{-3} \text{ eV}^2$

Direct detection of CvB on earth

Experimental proposal

[from Long @COSMO '14]

PTOLEMY (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) C. Tully et. al. (2013)

Direct detection of CvB on earth

Experimental proposal

[from Long @COSMO '14]

PTOLEMY (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) C. Tully et. al. (2013)

expected rate: 8–23 events per 100 g tritium and year for Majorana neutrinos
de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

depends on DM halo & absolute v mass

LAUNCH 2017, Heidelberg

Discriminating Dirac from Majorana neutrinos

Dirac vs. Majorana

detectable neutrinos are nonrelativistic

Discriminating Dirac from Majorana neutrinos

Dirac vs. Majorana

- detectable neutrinos are nonrelativistic
- Dirac neutrinos: 50% are "lost" for detection

Long, Lunardini, and Sabancilar (2014) de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

$$\Gamma_{C\nu B}^{\text{Majorana}} = \mathbf{2} \cdot \Gamma_{C\nu B}^{\text{Dirac}} \approx \frac{8 - 23}{\text{yr}^{-1} \cdot 100 \text{ g}}$$

Discriminating Dirac from Majorana neutrinos

Dirac vs. Majorana

- detectable neutrinos are nonrelativistic
- Dirac neutrinos: 50% are "lost" for detection

Long, Lunardini, and Sabancilar (2014) de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

$$\Gamma_{C\nu B}^{Majorana} = \mathbf{2} \cdot \Gamma_{C\nu B}^{Dirac} \approx \frac{8 - 23}{yr^{-1} \cdot 100 g}$$

 \bowtie local v density higher than average

Ringwald and Wong (2004) ; de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

e.g.
$$\Gamma_{\rm CvB}^{\rm Majorana} \approx 23 \, {\rm yr}^{-1}/100 \, {\rm g}$$
 for $m_{\nu} = 150 \, {\rm meV}$

Detection of the nonthermal background

Detection of the nonthermal background

relic v's are (mainly) **nonrelativistic**

Detection of the nonthermal background

Detection of the nonthermal background

relic v's are (mainly) **nonrelativistic**

 \mathbb{R} chiralities mix via the mass term: $\nu_R \rightarrow "\nu_{nt}" \& \nu_L \rightarrow \nu_{th}$

Detection of the nonthermal background

Detection of the nonthermal background

- relic v's are (mainly) nonrelativistic
- $^{\tiny \hbox{\tiny IMS}}$ chiralities mix via the mass term: $\nu_R \rightarrow ``\nu_{nt}"$ & $\nu_L \rightarrow \nu_{th}$
- → half of the initial $\nu_{\rm R}$ are "gained" for detection via β^{-1}

L Detection of the nonthermal background

Detection of the nonthermal background

- relic v's are (mainly) nonrelativistic
- \mathbb{R} chiralities mix via the mass term: $\nu_R \rightarrow "\nu_{nt}" \& \nu_L \rightarrow \nu_{th}$
- → half of the initial $\nu_{\rm R}$ are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos

Detection of the nonthermal background

Detection of the nonthermal background

L Detection of the nonthermal background

Detection of the nonthermal background

- relic v's are (mainly) nonrelativistic
- \mathbb{R} chiralities mix via the mass term: $\nu_R \rightarrow "\nu_{nt}" \& \nu_L \rightarrow \nu_{th}$
- → half of the initial $\nu_{\rm R}$ are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos
- Dirac suppression can be completely undone

Abazajian, Chen & M.R. (to appear)

Detection of the nonthermal background

Detection of the nonthermal background

- relic v's are (mainly) nonrelativistic
- \mathbb{R} chiralities mix via the mass term: $\nu_R \rightarrow "\nu_{nt}" \& \nu_L \rightarrow \nu_{th}$
- → half of the initial $\nu_{\rm R}$ are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos
- Dirac suppression can be completely undone

Abazajian, Chen & M.R. (to appear)

bottom-line:

discrimination between Dirac and Majorana through measurement of relic neutrinos may be impossible

Is there an appropriate $v_{\rm R}$ production mechanism?

e.g. fermionic preheating

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

Is there an appropriate $v_{\rm R}$ production mechanism?

e.g. fermionic preheating

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

Reference to the set of v_R get produced during inflation and get 'cooled down' afterwards

Summary & outlook

•••

neutrinos might be more abundant than photons!

	t _{creation}	$N_{\rm eff}$	relic density
$v_{ m th}$	$t_{\rm BBN} \sim 1 {\rm s}$	3.046	$n_{\rm v_{th}} \approx 336 {\rm cm}^{-3}$
$v_{\rm nt}$	t _{infl.}	$\lesssim 0.7$	$n_{\nu_{\rm nt}} \lesssim 217 {\rm cm}^{-3}$
γ	$t \simeq 3.8 \cdot 10^5 \mathrm{a}$	16/7	$n_{\gamma} \approx 412 \mathrm{cm}^{-3}$
$(n_{\nu_{\rm nt}} \lesssim 84 {\rm cm}^{-3}$ for $\Delta N_{\rm eff} = 0.2)$			

Summary & outlook

neutrinos might be more abundant than photons!

-

nonthermal neutrinos may spoil the distinction between Dirac and Majorana

Summary & outlook

neutrinos might be more abundant than photons!

-

nonthermal neutrinos may spoil the distinction between Dirac and Majorana

nonthermal neutrinos directly probe the universe at the stage of inflation

Standard picture + nonthermal Dirac neutrinos

Happy birthday Manfred!

Backup slides

Fermionic preheating

Fermionic preheating

ingredients

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

 \checkmark massive scalar field ϕ such as inflaton w/ $\mathscr{V}(\phi) \sim \frac{m_{\phi}^2}{2} \phi^2$

 \checkmark coupling to fermions $\lambda \phi \overline{\Psi} \Psi$

Fermionic preheating

Fermionic preheating

ingredients

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

 \checkmark massive scalar field ϕ such as inflaton w/ $\mathscr{V}(\phi) \sim \frac{m_{\phi}^2}{2} \phi^2$

 \checkmark coupling to fermions $\lambda \phi \overline{\Psi} \Psi$

Greene and Kofman (1999)

$$q := \lambda^2 \phi_0^2 / m_\phi^2$$

$$\varepsilon_{\rm F} \sim q^{1/4} m_\phi$$

$$\frac{q^{1/4}}{2} \sim \frac{\varepsilon_{\rm F}}{T_{\rm RH}} = \xi \lesssim 3$$

Michael Ratz, UC Irvine

LAUNCH 2017, Heidelberg

Fermionic preheating

Nonthermal $v_{\rm R}$ production mechanism

• to produce nonthermal ν_R one needs a coupling

 $\mathscr{L} \supset \lambda \phi \overline{\nu_{R}^{C}} \nu_{R} + \text{h.c.}$

• Majorana mass term forbidden by e.g. \mathbb{Z}_4^L

Witten (2001)

• reheating of the SM via perturbative decay of ϕ , or $\phi^2 H^2$ coupling and the "scalar" parametric resonance Kofman, Linde, and Starobinsky (1994); Traschen and Brandenberger (1990)

▶ back

Discriminate thermal from nonthermal relic neutrinos?

Discriminate thermal from nonthermal relic neutrinos?

obvious difference: spectrum?

Discriminate thermal from nonthermal relic neutrinos?

Discriminate thermal from nonthermal relic neutrinos?

- obvious difference: spectrum?
- → would require e^- energy resolution of $O(10^{-4}) eV$

Discriminate thermal from nonthermal relic neutrinos?

Discriminate thermal from nonthermal relic neutrinos?

- obvious difference: spectrum?
- → would require e^- energy resolution of $O(10^{-4})eV$
- annual modulation?
 due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle v_{C\nu B, nt} \rangle = 572 (1 + z) \left(\frac{0.1 \text{ eV}}{m_{\nu}} \right) \left(\frac{\Delta N_{\text{eff}}^{(\nu_R)}}{0.7} \right)^{1/4} \text{ km s}^{-1}$$
$$\langle v_{C\nu B, \text{ th}} \rangle = 1580 (1 + z) \left(\frac{0.1 \text{ eV}}{m_{\nu}} \right) \text{ km s}^{-1}$$
$$\text{redshift}$$

Discriminate thermal from nonthermal relic neutrinos?

Discriminate thermal from nonthermal relic neutrinos?

- obvious difference: spectrum?
- → would require e^- energy resolution of $O(10^{-4})eV$
- annual modulation?
 due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle v_{\text{C}\nu\text{B, nt}} \rangle = 572 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}}\right) \left(\frac{\Delta N_{\text{eff}}^{(\nu_{\text{R}})}}{0.7}\right)^{1/4} \text{km s}^{-1}$$
$$\langle v_{\text{C}\nu\text{B, th}} \rangle = 1580 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}}\right) \text{km s}^{-1}$$

Huang and Zhou (2016)

Discriminate thermal from nonthermal relic neutrinos?

Discriminate thermal from nonthermal relic neutrinos?

- obvious difference: spectrum?
- → would require e^- energy resolution of $O(10^{-4})eV$
- annual modulation?
 due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle v_{\text{C}\nu\text{B, nt}} \rangle = 572 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}}\right) \left(\frac{\Delta N_{\text{eff}}^{(\nu_{\text{R}})}}{0.7}\right)^{1/4} \text{km s}^{-1}$$
$$\langle v_{\text{C}\nu\text{B, th}} \rangle = 1580 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}}\right) \text{km s}^{-1}$$

References I

- P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. *Astron. Astrophys.*, 594:A13, 2016. doi: 10.1051/0004-6361/201525830.
- Francesco Antonelli, Daniele Fargion, and Rostislav Konoplich. Right-handed Neutrino Interactions in the Early Universe. *Lett. Nuovo Cim.*, 32:289, 1981. doi: 10.1007/BF02745122.
- Jurgen Baacke, Katrin Heitmann, and Carsten Patzold. Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field. *Phys. Rev.*, D58: 125013, 1998. doi: 10.1103/PhysRevD.58.125013.
- P. F. de Salas, S. Gariazzo, J. Lesgourgues, and S. Pastor. Calculation of the local density of relic neutrinos. 2017.

References II

- Patrick B. Greene and Lev Kofman. Preheating of fermions. *Phys. Lett.*, B448:6–12, 1999. doi: 10.1016/S0370-2693(99)00020-9.
- Guo-yuan Huang and Shun Zhou. Discriminating between Thermal and Nonthermal Cosmic Relic Neutrinos through Annual Modulation at PTOLEMY. 2016.
- Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. Reheating after inflation. *Phys. Rev. Lett.*, 73:3195–3198, 1994. doi: 10.1103/PhysRevLett.73.3195.
- Mariangela Lisanti, Benjamin R. Safdi, and Christopher G. Tully. Measuring Anisotropies in the Cosmic Neutrino Background. *Phys.Rev.*, D90(7):073006, 2014. doi: 10.1103/PhysRevD.90.073006.

References III

- Andrew J. Long, Cecilia Lunardini, and Eray Sabancilar. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential. *JCAP*, 1408:038, 2014. doi: 10.1088/1475-7516/2014/08/038.
- Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Teguayco Pinto, Ofelia Pisanti, and Pasquale D. Serpico. Relic neutrino decoupling including flavor oscillations. *Nucl. Phys.*, B729: 221–234, 2005. doi: 10.1016/j.nuclphysb.2005.09.041.
- Andreas Ringwald and Yvonne Y. Y. Wong. Gravitational clustering of relic neutrinos and implications for their detection. *JCAP*, 0412:005, 2004. doi: 10.1088/1475-7516/2004/12/005.
- Jennie H. Traschen and Robert H. Brandenberger. Particle Production During Out-of-equilibrium Phase Transitions. *Phys. Rev.*, D42:2491–2504, 1990. doi: 10.1103/PhysRevD.42.2491.

References IV

Steven Weinberg. Universal Neutrino Degeneracy. *Phys. Rev.*, 128:1457–1473, 1962. doi: 10.1103/PhysRev.128.1457.

Edward Witten. Lepton number and neutrino masses. *Nucl. Phys.Proc.Suppl.*, 91:3–8, 2001. doi: 10.1016/S0920-5632(00)00916-6.