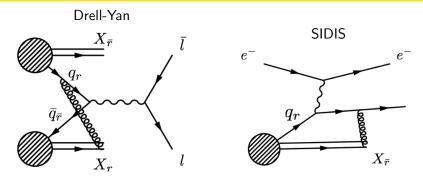
Nonperturbative Transverse Momentum Effects in Dihadron and Direct Photon-Hadron Angular Correlations

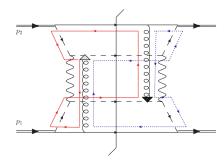
Joe Osborn for the PHENIX Collaboration

University of Michigan

QCD-N'16, July 12, 2016

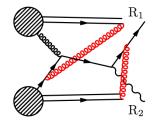


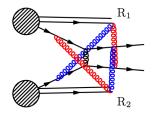
QCD-N 2016


Universality and Factorization in TMDs

- Sign change in Sivers TMD PDF predicted due to initial-state vs. final-state gluon exchange with proton remnants between DY and SIDIS: modified universality!
- What about $p+p \rightarrow h_1h_2$ where both initial- and final-state interactions are possible?

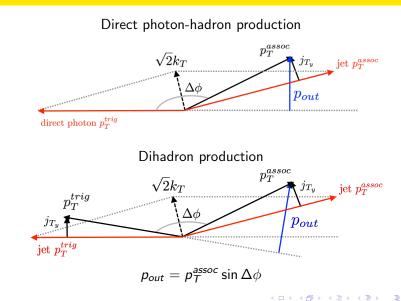
TMD Factorization Breaking


- Rogers and Mulders paper predicts QCD factorization breaking in dihadron production from p+p collisions in a TMD framework (Phys. Rev. D 81,094006 (2010))
- Back-to-back two particle angular correlations give sensitivity to initial- and final-state transverse momentum k_T and j_T



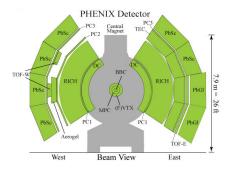
 ≥2 gluons exchanged with proton remnants leads to predicted breakdown

Direct Photons and Dihadrons


- Direct photon-hadron and dihadron correlations both predicted to be sensitive to factorization breaking effects in PHENIX
- Assuming factorization, direct photon-hadrons probe three nonperturbative functions, while dihadrons probe four
- Direct photons offer one less avenue for gluon exchange in the final-state: fewer/different effects?

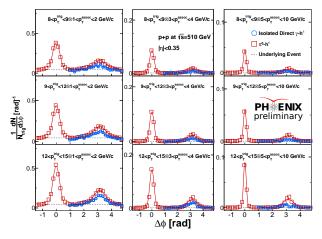
12/07/16 4 / 21

Angular Correlation Observables



QCD-N 2016

12/07/16 5 / 21


PHENIX Detector

- PHENIX central arms
 - $\Delta \phi \sim \pi$ • $|\eta| < 0.35$
- Electromagnetic Calorimeter (PbSc/PbGl) provides isolated direct photon and $\pi^0 \rightarrow \gamma \gamma$ detection
- Drift Chamber (DC) and Pad Chambers (PC) provide nonidentified charged hadron detection

• New results from 2012/2013 \sqrt{s} =510 GeV p+p runs

$\Delta \phi$ Correlations for π^0 -h[±] and Direct γ -h[±]

• Two jet structure visible for π^0 -h[±], isolation cut on near side for direct γ -h[±]

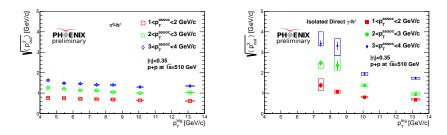
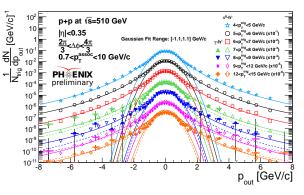

• Direct γ -h[±] probes smaller jet energy due to emerging from hard scattering at LO

Image: Image:

Joe Osborn (UM)

12/07/16 7 / 21

$\sqrt{\langle p_{out}^2 \rangle}$ Extracted from Fits to $\Delta \phi$ Correlations

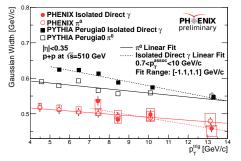

- $\sqrt{\langle p_{out}^2\rangle}$ characterizes away-side jet width and decreases with hard scale p_T^{trig}
- Sensitive to perturbative and nonperturbative k_T and j_T

QCD-N 2016

(日) (同) (三) (三)

pout Distributions

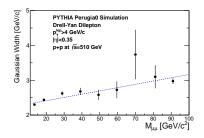
- *p*_{out} shows two distinct regions: gaussian and power law
- Gaussian fits clearly fail past ${\sim}1.3$ GeV/c
- Indicates transition from nonperturbative to perturbative k_T and j_T



• Note: Curves are Kaplan and Gaussian fits, not calculations!!

(日) (同) (三) (三)

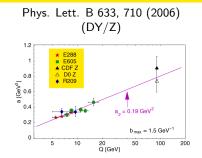
12/07/16 9 / 21


Gaussian Widths of p_{out}

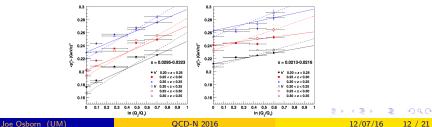
- Gaussian widths of p_{out} distributions decrease with hard scale p_T^{trig}
- Sensitive to only nonperturbative k_T and j_T in the nearly back-to-back region $\Delta \phi \sim \pi$
- PYTHIA replicates slope almost exactly, but shows 15% difference in magnitude of widths

Expectations from Collins-Soper-Sterman (CSS) Evolution

- Expectation from CSS evolution is that any momentum width sensitive to nonperturbative k_T grows with the hard scale
 - Broadening due to increased phase space for hard gluon radiation
- Note that the CSS evolution equation comes directly out of the derivation for TMD factorization


• PYTHIA confirms expectation from CSS evolution for same observable

- 4 同 6 4 日 6 4


12/07/16 11 / 21

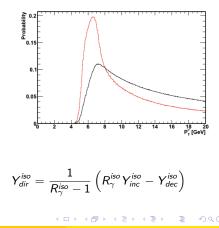
SIDIS and DY/Z Measurements

- DY/Z and SIDIS, where factorization is predicted to hold, have been shown to follow CSS evolution
- Phenomenological studies in both interactions show increasing momentum widths when sensitive to small k_T scale

Phys. Rev. D 89, 094002 (2014) (SIDIS)

Conclusions

- Factorization breaking has been predicted in $p+p \rightarrow h+X$ collisions for observables sensitive to nonperturbative transverse momentum
- New measurements from PHENIX of nearly back-to-back dihadron and isolated direct photon-hadron correlations at \sqrt{s} =510 GeV
- Angular correlations sensitive to initial-state k_T and final-state j_T show decreasing momentum widths with hard scale in p + p → h + X
- Literature shows that Drell-Yan/Z and SIDIS interactions, which CSS evolution describes, exhibit increasing momentum widths with hard scale
- Paper draft undergoing internal review process!

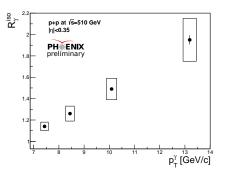

Back Up

▲口> ▲圖> ▲屋> ▲屋>

Analysis Methods

- Correlated π⁰ h[±] or isolated γ - h[±] are collected and corrected with:
 - Charged hadron efficiency
 - Acceptance correction
- Direct photons undergo additional statistical subtraction to remove decay photon background, estimated with Monte Carlo probability functions
- Isolation and tagging cuts remove decay photon background and NLO fragmentation photons

Probability for a π^0 to decay to a photon which could not be tagged with 5 < p_T < 7 GeV/c in PHENIX

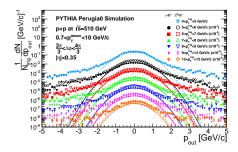


Joe Osborn (UM)

12/07/16 15 / 21

R^{iso}_{γ} Measurement at $\sqrt{s}{=}510$ GeV

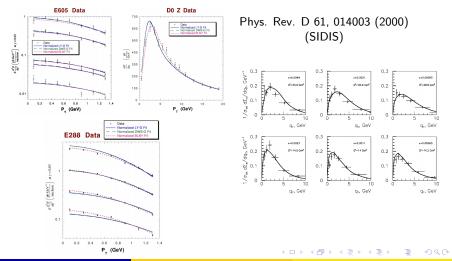
- R_{γ}^{iso} measured for statistical subtraction of isolated decay photon contribution
- *R*_γ measured in PHENIX and corrected by tagging and isolation efficiencies
- $R_{\gamma}^{iso} > 1$ indicates isolated direct photon production



$$R_{\gamma}^{iso} = rac{R_{\gamma}}{(1 - \epsilon_{dec}^{tag})(1 - \epsilon_{dec}^{niso})} rac{N_{inc}^{iso}}{N_{inc}}$$

12/07/16 16 / 21

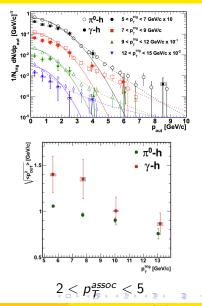
PYTHIA *p*out Distributions


- PYTHIA π⁰-h[±] and isolated γ-h[±] correlations analyzed similarly to data
- PYTHIA exhibits similar characteristics to data: nonperturbative transitioning to perturbative region
- Initial and final state interactions possible in PYTHIA: all particles are forced to color neutralize

• • • • • • • • • • • • •

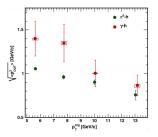
Other DY/Z and SIDIS Refs.

Phys. Rev. D 67, 073016 (2003) (DY/Z)

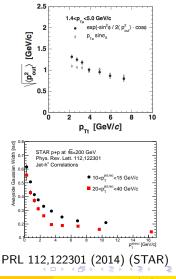

Joe Osborn (UM)

QCD-N 2016

12/07/16 18 / 21


\sqrt{s} =200 GeV Results

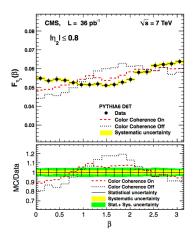
- Previous PHENIX result at \sqrt{s} =200 GeV with larger errors (Phys. Rev. D 82, 072001 (2010))
- Next step: analyze recent Run 15 \sqrt{s} =200 GeV p+p and p+A data from RHIC!
- 6x luminosity in Run 15 *p*+*p*, as well as first result from *p*+*A*


Other Measurements in Literature

- Other RHIC publications show the same effect in $\sqrt{\langle p_{out}^2 \rangle}$ and away-side width
- All previous analyses motivated by different physics goals: fragmentation functions, partonic energy loss in QGP, etc.

PRD 82, 072001 (2010) (PHENIX)

PRD 74, 072002 (2006) (PHENIX)


Joe Osborn (UM)

QCD-N 2016

12/07/16 20 / 21

Possible Links to Color Coherence Effects?

- D0, CDF, CMS have all published papers on evidence for "color coherence effects"
- Color flow and "antenna" traced through hard scatter with gluon radiation
- Few citations though, relatively unknown work!
- CMS: Eur.Phys.J. C74 (2014) no.6, 2901
- CDF: Phys. Rev. D 50, 5562 (1994)
- D0: Phys. Lett. B 414, 419 (1997)

(日) (同) (三) (三)

QCD-N 2016

12/07/16 21 / 21