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A (NOT SO) SIMPLE MODEL 

• ModelConfig: GlobalObservables, 
Snapshots

• StandardProfileLikelihoodDemo.C
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Nomenclature

Parameters: POI vs Nuisance Parameters
➡ POI are never profiled or marginalized. Each POI has one value. You can collect results 

for different values of the POI and make a plot.

Frequentist: profiling nuisance parameters to the observed data

Hybrid: frequentist test, but marginalizing nuisance parameters
(currently not used in CMS nor ATLAS; was used at LEP)

Bayesian: all parameters (POI and Nuisance Parameters) need a prior. The prior on the signal 
strength parameter is a delicate issue (see http://root.cern.ch/root/html/tutorials/roostats/JeffreysPriorDemo.C.html).

CLs: Frequentist method. Intervals for Gaussians and Poissons are numerically equal to 
Bayesian intervals with flat Priors. This is an “attractive” feature and makes it possible to cross 
check a Frequentist result with a Bayesian method, but the intervals mean different things.
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The on/off problem (arxiv:0702156v4, HybridInstructional.C and references, ATLAS StatForum recom.)

Often used for counting experiment:

π(b) is a Bayesian prior and cannot be used in pure Frequentist methods. Choice of prior 
is not easy in most cases.

Alternatively, one can introduce a sideband measurement (which is also how knowledge 
about b was obtained in reality):

➡ Using the Likelihood of a previous measurement propagates all errors properly: do 
whenever that information is available!
(also see current discussions of “publishing the Likelihood” in ATLAS and CMS)

Using this approach, the knowledge about b is defined in a consistent way.

From the paper by Cousins,
Linneman,Tucker:
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ATLAS Statistics Forum
DRAFT

25 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results. These comments are quite general, and each experiment is expected to have
well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes n

on

events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⌧b events and
measures n

o↵

events. This simple situation (often referred to as the ‘on/o↵’ problem) can be
expressed by the following probability density function:

P (n
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o↵

|s, b)
| {z }

jointmodel

= Pois(n
on

|s+ b)
| {z }
mainmeasurement

Pois(n
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. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⌧ . In many cases a more accurate relation between
the sideband measurement n

o↵

and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence
intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (n
on

|s) =
Z

dbPois(n
on

|s+ b)⇡(b), (2)

where ⇡(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of ⇡(b)? The important fact which often evades serious
consideration is that ⇡(b) is a Bayesian prior, which may or may-not be well-justified. It
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in gamma ray astronomy (GRA) as popularized by Li and Ma [8]), which gives
approximate results based on likelihood ratios. In Sec. 6, we briefly describe
other methods, and in Sec. 7 we compare some results obtained with all the
methods.

In the remaining sections we focus on the three main methods introduced in
Secs. 3-5, and study in detail the relations among the computed Z values and
the Type I error rates, as one spans the space of true values of the parameters.
We conclude in Sec. 10 that the little-used frequentist solution should have
much broader use, and we even advocate its prudent use in the second proto-
type problem, in which it applies only via a rough correspondence. As found in
Refs. [9,10], (which advocate some modifications) the profile likelihood method
provides remarkably good results over a wide range of parameters. Given the
richness of results even for these simple prototype problems, there remains
much work to be done, beyond the scope of this paper, in exploring per-
formance of other recipes and further generalizations to more complicated
problems [1,11–13].

Appendix A contains a summary of our notation. Appendix B has a deriva-
tion of Eqn. 4, followed in Appendix C by a proof of the “remarkable con-
nection” mentioned above. Calculational details of the various Z-values are in
Appendix D, and some implementation examples are in Appendix E.

2 Two prototype problems differing in the measurement of µb

2.1 The on/off problem

In the first prototype problem, which we refer to as the “on/off” problem, the
subsidiary measurement of µb consists of the observation of noff events in a
control region where no signal events are expected. In HEP, the control region
is commonly referred to as a “sideband” since it is typically a sample of events
which is near the signal region in some measured parameter, i.e., in a band
of that parameter alongside but disjoint from the parameter values where the
signal might exist.

This HEP prototype problem has an exact analog in gamma ray astronomy
(GRA), upon which we base our notational subscripts “on” and “off”. The
observation of non photons when a telescope is pointing at a potential source
(“on-source”) includes both background and the source, while the observation
of noff photons with the telescope pointing at a source-free direction nearby
(“off-source”) is the subsidiary measurement. In both the HEP and GRA
examples, we let the parameter τ denote the ratio of the expected means of
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Exercise

Build the Likelihood and print the tree.
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w->pdf("model")->Print("t");

0x7fbd338e7800 RooProdPdf::model = 2.59541e-08 [Auto,Dirty] 
  0x7fbd338d8a00/V- RooPoisson::px = 6.51116e-07 [Auto,Dirty] 
    0x7fbd338b7c00/V- RooRealVar::x = 150
    0x7fbd338ab600/V- RooAddition::splusb = 100 [Auto,Clean] 
      0x7fbd338b6e00/V- RooRealVar::s = 0
      0x7fbd338b7400/V- RooRealVar::b = 100
  0x7fbd338d6000/V- RooPoisson::py = 0.039861 [Auto,Dirty] 
    0x7fbd338d9600/V- RooRealVar::y = 100
    0x7fbd338d6600/V- RooProduct::taub = 100 [Auto,Clean] 
      0x7fbd338b9c00/V- RooRealVar::tau = 1
      0x7fbd338b7400/V- RooRealVar::b = 100
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Exercise

Do Bayesian integration using RooFit over b with a uniform prior.
(w->factory("PROJ::averagedModel(PROD::foo(px|b,py|b,prior_b),b)");)
➡ red is b-only averaged model
➡ green is b known exactly
➡ blue is s+b averaged model

Also do: Gaussian (σ=20) and Lognormal (k=1.2)
terms for the sideband.

15

Sideband is a 
Gaussian with width 2



Sven Kreiss

Global Observables

So far, the observable from a previous measurement (sideband measurement) was a 
constant and that is fine for plotting the Profile Likelihood. When generating pseudo 
experiments, one should take into account that this is not the true value. If the experiment 
is repeated 1000 times in reality, the observed number of events would fluctuate according 
to the sideband’s Likelihood function. The same has to be done for the pseudo 
experiments. Those observables need to be “labeled” as Global Observables so that 
RooFit/RooStats can generate them properly.

Global Observables are not Observables

Observables are generated for every event, Global Observables are generated once per 
toy. This is easy to understand with an example. The JES input as given by the 
performance group is a Global Observable. In every toy experiment, it has exactly one 
value and does not change from one event to the next. On the other hand, an invariant 
mass which is an Observable (not global) is different for every event.
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Snapshots

A RooArgSet usually just specifies which variables belong to a set, but not what value they 
have. To fix the values, this is what snapshots are for.

For a S+B model, the “signal strength modifier” μ might be 1 and for the B only model it 
might be 0. The ModelConfigs for these two cases contain snapshots with μ=1 and μ=0 
but are otherwise identical.
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Exercise: on/off Problem continued

Generate one fake observed event and call it “obsData”. Make a ModelConfig for the on/
off problem. Print it and write it to a root file.

Run: root -l '$ROOTSYS/tutorials/roostats/
StandardProfileLikelihoodDemo.C("onOffProblem.root","w","onOffProb
lem","obsData")'

to produce the plot.
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DataStore modelData (Generated From model)
  Contains 1 entries
  Observables: 
    1)  x = 139  L(0 - 500)  "x"

=== Using the following for onOffProblem ===
Observables:             RooArgSet:: = (x)
Parameters of Interest:  RooArgSet:: = (s)
Nuisance Parameters:     RooArgSet:: = (b)
Global Observables:      RooArgSet:: = (y)
PDF:                     RooProdPdf::model[ px * py ] = 0.000915446
Snapshot:                
  1) 0x7f8194229a00 RooRealVar:: s = 40  L(0 - 100)  "s"

95% interval on s is : [8.78761, 69.6256]
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Optional Exercise

Re-do the previous exercise with Gaussian sidebands with a few different widths. 
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TOOLS

• Hypothesis Tests: Test 
Statistics, ToyMCSampler, 
Detailed Output, Multiple 
Test Statistics
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Hypothesis Testing

Kendall 2A: 

“In general, any hypothesis concerning the generating mechanism for observable random 
variables is a statistical hypothesis.”

“... no hypothesis can be tested in isolation; there must be at least two competing 
hypothesis (and we usually consider exactly two) even if one asserts proposition A and the 
other asserts ‘not-A’.”

Null Hypothesis: the hypothesis that is tested
Alternative Hypothesis: another hypothesis that defines the choice of the critical region
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Test Statistics

Test Statistic: Maps high dimensional data (points in “observable”-space) to a real number. 
(source?), Fred James: “Any function of the data is called a statistic.”
➡ a complicated shape that defines the boundary between acceptance and critical 

region gets mapped to a point on a line

At the LHC, the Profile-Likelihood-Test-Statistic is used.
➡ takes nuisance parameters into account

22Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

SoS, Autrans, May 19 & 20, 2010

Three common test statistics
We express cross-section as                       for convenience.
Effect of systematics is parametrized by one or more “nuisance 
parameters” denoted    .  

● best fit point is:
● best fit of nuisance parameters with µ fixed is     (aka “profiled”)

In principle, s+b and b-only models can have different parametrizations

RooStats has the three common test statistics used in the field (and more)
● simple likelihood ratio (used at LEP, nuisance parameters fixed)

● ratio of profiled likelihoods (used commonly at Tevatron)

● profile likelihood ratio (related to Wilks’s theorem)

�(µ) = Ls+b(µ, ˆ̂⇥)/Ls+b(µ̂, ⇥̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂�)/Lb(µ = 0, ˆ̂�0)

µ = �/�SM

⌫
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Generating Toys

Toys are generated to get a distribution of possible outcomes of the test statistic values. 
This distribution defines what is called: “the probability of obtaining data that is at least as 
discrepant as the observed data”.
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ToyMCSampler is at the center of all Tools that use Toys

FrequentistCalculator and HybridCalculator use the ToyMCSampler to generate sampling 
distributions. The HypoTestInverter can also use these calculators to set limits using toys.

Do not use the ToyMCSampler directly. To get a sampling distribution with profiled 
nuisance parameters of the Null hypothesis, use the FrequentistCalculator and set the 
number of toys for the Alternative hypothesis to zero.
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FrequentistCalculator

Profiling nuisance Parameters (conditional ensemble):

Nuisance parameters have to be fixed before doing a Frequentist Hypothesis test. 
Essentially only two possible choices: set them to their nominal values (unconditional 
ensemble) or do a fit (aka “profile”) to the observed data (conditional ensemble).
➡ pros and cons exist for both choices, but asymptotic formulae correspond to the 

conditional ensemble

Alternatively, it is also possible to integrate instead of profile the nuisance parameters. The 
integration is only defined when there is a Prior which is an inherit Bayesian object. 
Because a Bayesian integration is used inside a Frequentist calculation, this is called the 
Hybrid method and is implemented in the HybridCalculator which has an almost identical 
interface to the FrequentistCalculator.
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Hypotheses Testing in RooStats

26



Sven Kreiss

Exercise

Write a macro that reads in a Workspace, ModelConfig and Data and then runs 
FrequentistCalculator with MaxLikelihoodEstimateTestStat ( μ̂ ), BinCountTestStat, 
SimpleLikelihoodRatioTestStat, RatioOfProfiledLikelihoodsTestStat and 
ProfiledLikelihoodTestStat. Each result should be plotted and collected into a PDF file.

Optional: Look at $ROOTSYS/tutorials/roostats/HybridInstructional.C where the on/off 
Problem is investigated with the HybridCalculator.
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Exercise

Now that you have a way to get a p0-value with toys, put that function into a loop over 
another parameter and draw a graph of this parameter. If you use this with the previous 
“falling exponential + Gauss” model and call the mean of the Gaussian mH and use it as 
your “other parameter”  then you just created a discovery plot with toys for the H→γγ 
channel.
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Asymptotic Calculations

Always good to know: the significance  Z=√q0   for the profile Likelihood for discovery.

➡ Asymptotically, the significance is the square-root of the observed profile 
Likelihood value under the null hypothesis.

RooStats::ProfileLikelihoodTestStat returns q0/2.

Exercise: go back and add this asymptotic result to the previous exercise.

Advanced I: Generate expected data and add the expected p0 to the plot.
Advanced II: Add energy scale systematic uncertainty and observe the breaking of the 
Asymptotics.
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TABLE III. Higgs boson production cross section multiplied
by the branching ratio into two photons, expected number
of signal events summed over all categories for 4.9 fb−1 and
selection efficiencies for various Higgs boson masses.

mH [GeV] 110 115 120 125 130 135 140 145 150

σ ×BR [fb] 45 44 43 40 36 32 27 22 16

Signal events 69 72 72 69 65 58 50 41 31

Efficiency [%] 31 33 34 35 37 37 38 38 39

that have more degrees of freedom than the single expo-
nential, and comparing the residuals to those obtained
with the exponential fit.

The dominant experimental uncertainty on the signal
yield is the photon reconstruction and identification ef-
ficiency (±11%), which is estimated with data by using
electrons from Z and W decays and photons selected
from Z → !!γ (! = e, µ) events. Pileup also affects
the identification efficiency and contributes to the uncer-
tainty (±4%). Further uncertainties on the signal yield
are related to the trigger (±1%), Higgs boson pT model-
ing (±1%), isolation (±5%) and luminosity (±3.9%). Un-
certainties on the predicted cross sections are due to un-
certainties on the QCD renormalization and factorization
scales (+12

−8 %) and on the parton density functions (PDF,
[37] and references therein) and αs (±8%). The total
uncertainty on the signal yield is +20

−17%. The total un-
certainty on the mass resolution is ±14%, dominated by
the uncertainty on the energy resolution of the calorime-
ter, determined from Z → ee events (±12%). Further
uncertainties on the mass resolution result from an im-
perfect knowledge of material in front of the calorimeter
affecting the extrapolation from electron to photon cal-
ibration (±6%), the impact of pileup (±3%) estimated
from events taken with random triggers, and the pho-
ton angle measurement (±1%) estimated using Z → ee
events. The uncertainty on the knowledge of the material
in front of the calorimeter is used to derive the amount of
event migration between the converted and unconverted
categories (±4.5%). Different PDFs and scale variations
in HqT calculations are used to derive possible event
migration between high and low pTt categories (±8%).

A modified frequentist approach (CLS) [38] for set-
ting limits and a frequentist approach to calculate the p0
value are used [39]. The p0 is the probability that the
background fluctuates to the observed number of events
or higher. The combined likelihood, which is a function
of the ratio of the measured cross-section relative to that
of the SM prediction, is constructed from the unbinned
likelihood functions of the nine categories. Systematic
uncertainties are incorporated by introducing nuisance
parameters with constraints. Asymptotic formulae [40]
are used to derive the limits and p0 values, which are

refined with pseudo experiments [41], as functions of the
hypothetical Higgs boson mass.
The observed and expected local p0 values and the

95% CL limits on the Higgs boson production in units
of the SM cross section are displayed in Figs. 3 and 4.
Before considering the uncertainty on the signal mass po-
sition, the largest excess with respect to the background-
only hypothesis in the mass range 110−150 GeV is ob-
served at 126.5 GeV with a local significance of 2.9 stan-
dard deviations. The uncertainty on the mass position
(±0.7 GeV) due to the imperfect knowledge of the photon
energy scale has a small effect on the significance. When
this uncertainty is taken into account, the significance is
2.8 standard deviations; this becomes 1.5 standard devi-
ations when the look elsewhere effect [42] for the mass
range 110−150 GeV is included. The median expected
upper limits of the cross section in the absence of a true
signal, at the 95% CL, vary between 1.6 and 1.7 times the
SM cross section in the mass range 115−130 GeV, and
between 1.6 and 2.7 in the mass range 110−150 GeV. The
observed 95% CL upper limit of the cross section relative
to the SM cross section is between 0.83 and 3.6 over the
full mass range. A SM Higgs boson is excluded at 95% CL
in the mass ranges of 113−115 GeV and 134.5−136 GeV.
These results are combined with SM Higgs searches in
other decay channels in Ref. [41].
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FIG. 3. The observed local p0, the probability that the back-
ground fluctuates to the observed number of events or higher
(solid line). The open points indicate the observed local p0
value when energy scale uncertainties are taken into account.
The dotted line shows the expected median local p0 for the
signal hypothesis when tested at mH .
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