ORIGIN OF INFLATION FROM VISIBLE SECTOR MODELS OF PARTICLE PHYSICS

Anupam Mazumdar

Lancaster University

Planck-2013: Bonn, 20-24 May

How to Create

Matter

8

Perturbations ?

Generic Predictions for Inflation

Perturbations for Baryons & CDM have a common origin,

Iso-curvature perturbations less than 1%

Flatness

Adiabatic

Gaussian

Tilt

 $\Omega_0 = 1 \pm \mathcal{O}(10^{-5})$

 $\Phi = \Phi_g + f_{NL} \Phi_a^2$

Confirmed

Confirmed

 $f_{NL}^{\text{Local}} = 2.7 \pm 5.8$ $f_{NL}^{\text{Equi}} = -42 \pm 75$ $f_{NL}^{\text{Ortho}} = -25 \pm 39$

$$n_s = 0.9608 \pm 0.0054$$

 $r < 0.12 \left(\frac{V^{1/4}}{1.9 \times 10^{16} \text{ GeV}} \right)^4$

Tensor

$$r = \frac{T}{S} = 24\left(1 + \frac{p}{\rho}\right)$$

 $\Phi^2 \propto k^{1-n_s} \qquad n_s = 1 - 3\left(1 + \frac{p}{\rho}\right) + \frac{d}{dN}\ln\left(1 + \frac{p}{\rho}\right)$

 $f_{NL} \sim \mathcal{O}(1)$

 $\begin{array}{ll} \langle G_{\mu\nu}\rangle = 8\pi G \langle T_{\mu\nu}\rangle & \begin{array}{l} \text{Both sides are} \\ \text{treated quantum} \end{array} \\ \text{If Gravity is Classical, then} & r = \frac{T}{S} = 0 \\ \therefore \quad \Box h_{\mu\nu} = 0 \end{array} \\ \begin{array}{l} \text{Ashoorioon, Dev, AM (2012)} \end{array} \end{array}$

Chibisov, Mukhanov (1982)

More than one sources of Non-Gaussianity

 $+f_{NL}$ & $-f_{NL}$ $|A| \le \sqrt{\tau_{NL}}$ $\tau_{NL} < 2800 \ (@95\%)$

Wang, AM (2013), 1304.6399

NO Evidence for DARK/Hidden/Mirror Radiation

$$\rho_r = \rho_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{eff} \right] \approx \rho_\gamma (1 + 0.2271 N_{eff})$$

Only SM relativistic d.o.f. + 3 thermalized light neutrinos No need for light sterile states

Devil Hides in the Details

Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

Useful for Global Fitting but they shed NO light on our understanding of How to create Matter (US) & Perturbations ?

Challenges for $R + R^2$ It is utterly INCOMPLETE !

$$\begin{split} S_{q} &= \int d^{4}x \sqrt{-g} [RF_{1}(\Box)R + RF_{2}(\Box)\nabla_{\mu}\nabla_{\nu}R^{\mu\nu} + R_{\mu\nu}F_{3}(\Box)R^{\mu\nu} + R^{\nu}_{\mu}F_{4}(\Box)\nabla_{\nu}\nabla_{\lambda}R^{\mu\lambda} \\ &+ R^{\lambda\sigma}F_{5}(\Box)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\lambda}R^{\mu\nu} + RF_{6}(\Box)\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\lambda}F_{7}(\Box)\nabla_{\nu}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} \\ &+ R^{\rho}_{\lambda}F_{8}(\Box)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\rho}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}}F_{9}(\Box)\nabla_{\mu_{1}}\nabla_{\nu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} \\ &+ R_{\mu\nu\lambda\sigma}F_{10}(\Box)R^{\mu\nu\lambda\sigma} + R^{\rho}_{\mu\nu\lambda}F_{11}(\Box)\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\rho_{1}\nu\sigma_{1}}F_{12}(\Box)\nabla^{\rho_{1}}\nabla^{\sigma_{1}}\nabla_{\rho}\nabla_{\sigma}R^{\mu\rho\nu\sigma} \\ &+ R^{\nu_{1}\rho_{1}\sigma_{1}}F_{13}(\Box)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\nu_{1}}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}\rho_{1}\sigma_{1}}F_{14}(\Box)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\nu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} \end{split}$$

Gravity Invokes 🔿 Higher Order Corrections

$$S = \int d^4x \sqrt{-g} \left[R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$
$$\mathcal{F}_i(\Box) = \sum_n^\infty a_n \Box^n \qquad \Delta \mathcal{L} = \sqrt{-g} \left(\alpha R^2 + \beta R_{\mu\nu}^2 + \gamma R_{\alpha\beta\mu\nu}^2\right)$$

$$2\mathcal{F}_1(\Box) + \mathcal{F}_2(\Box) + 2\mathcal{F}_3(\Box) = 0$$

Biswas, Gerwick, Koivisto & AM, Phys. Rev. Lett. (2012)

Classical Gravity becomes WEAK in the UV (Asymptotic Freedom)

The Inflaton Vacuum cannot be arbitrary

A.M & Rocher, Phys. Rept. (2011), Particle Physics Models of Inflation & Curvaton

Last 50-60 e-folds of Inflation cannot be driven by an Arbitrary Field

Such as Gauge singlets, or String theory Moduli, or Dilaton,

You can always match the perturbations, exotic non-Gaussianity, wiggles, low multipoles, & perhaps what not,..., but creating the right form of matter remains the biggest challenge

Constructing a Potential ...

$$V(\phi) = V_0 + a(\phi - \phi_0) + \frac{b}{2}(\phi - \phi_0)^2 + \frac{c}{6}(\phi - \phi_0)^3 + \cdots,$$

$$V_0 \equiv V(\phi_0) , \ a \equiv V'(\phi_0) , \ b \equiv V''(\phi_0) , \ c \equiv V'''(\phi_0) ,$$

 $\phi - \phi_0 \ll M_p$

One requires shape & curvature smooth enough to appreciate the beauty

Constructing a Potential ...

$$V = \frac{1}{2}m^2|\phi|^2 - \frac{A\lambda}{nM_P^{n-3}}\phi^n + \frac{\lambda^2}{M_P^{2(n-3)}}|\phi|^{2(n-1)}$$

 $\frac{A}{m} = \sqrt{8(n-1)\left(1-\frac{(n-2)^2}{4}\beta^2\right)}$

$$\begin{split} \phi_0 &= \left(\frac{M_P^{n-3}m}{\lambda\sqrt{2(n-1)}}\right)^{1/(n-2)} \\ V_0 &= \frac{(n-2)^2}{2n(n-1)} m^2 \phi_0^2 \,, \\ a &= \frac{(n-2)^2}{4} \beta^2 m^2 \phi_0 \,, \\ c &= 2(n-2)^2 \, \frac{m^2}{\phi_0} \,. \end{split}$$

$$\begin{aligned} \mathcal{P}_{R}^{1/2} &\equiv \frac{1}{\sqrt{24\pi^{2}}} \frac{V_{0}^{1/2}}{\epsilon^{1/2} M_{P}^{2}} = \frac{V_{0}^{1/2}}{2\pi\sqrt{6}M_{P}^{2}X} \sin^{2}Y \\ n_{s} &\equiv 1 + 2\eta - 6\epsilon = 1 - \frac{4}{\mathcal{N}_{COBE}} Y \cot Y , \\ \alpha &= -\frac{4}{\mathcal{N}_{COBE}^{2}} \left(\frac{Y}{\sin Y}\right)^{2} . \end{aligned}$$

$$\begin{aligned} V(|\phi|) &= \frac{1}{2}m^2|\phi|^2 - \frac{Ah}{3}\phi^3 + h^2|\phi|^4 \quad (n=3)\\ V(|\phi|) &= \frac{1}{2}m^2|\phi|^2 - \frac{A\lambda}{6}\frac{\phi^6}{M_p^3} + \lambda^2\frac{|\phi|^{10}}{M_p^6} \quad (n=6) \end{aligned}$$

Inflation takes place always Below Planck VeV

Allahverdi, Enqvist, Garcia-Bellido, AM, PRL (2006), JCAP (2006)

Bueno-Sanchez, Dimopoulos & Lyth, JCAP (2006)

Allahverdi, Kusenko AM, JCAP (2006),

Allahverdi, Dutta & AM, PRL (2007)

Inflection-point Inflation: Flexibility of the Potential

Visible sector Inflatons

		Always lifted
	B-L	by W_{renorm} ?
LH _u	-1	
H_uH_d	0	
udd	-1	
LLe	-1	
QuL	-1	
QuH_u	0	
$\mathrm{QdH}_{\mathrm{d}}$	0	
LH _d e	0	
QQQL	0	
$\mathrm{Qu}\mathrm{Qd}$	0	
QuLe	0	
uude	0	
$QQQH_d$	1	
QuH _d e	1	
dddLL	-3	
uuuee	1	
QuQue	1	
QQQQu	1	
dddLH _d	-2	\checkmark
uudQdHu	-1	
$(QQQ)_4LLH_u$	-1	
$(QQQ)_4LH_uH_d$	0	
$(QQQ)_4H_uH_dH_d$	1	\checkmark
(QQQ) ₄ LLLe	-1	
uudQdQd	-1	
(QQQ) ₄ LLH _d e	0	
$(QQQ)_4LH_dH_de$	1	\checkmark
$(QQQ)_4H_d\overline{H_dH_d}e$	2	

SU($(3) \times SU(2)_l \times U(1)_Y$
$u_1 d_2 d_3$	$d_{2}^{\beta} = \frac{1}{\sqrt{3}}\phi$ $u_{1}^{\alpha} = \frac{1}{\sqrt{3}}\phi$ $d_{3}^{\gamma} = \frac{1}{\sqrt{3}}\phi$
$L_1 L_2 e_3$	$L_1^a = \frac{1}{\sqrt{3}} \begin{pmatrix} 0\\ \phi \end{pmatrix} L_2^b = \frac{1}{\sqrt{3}} \begin{pmatrix} \phi\\ 0 \end{pmatrix} e_3 = \frac{1}{\sqrt{3}} \phi$
$H_u H_d$	$H_u = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi \\ 0 \end{pmatrix} \qquad \qquad H_d = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \phi \end{pmatrix}$
SU(3)	$\times SU(2)_l \times U(1)_Y \times U(1)_{B-L}$
NH_uL	$N = \frac{1}{\sqrt{3}}\phi H_u = \frac{1}{\sqrt{3}} \begin{pmatrix} 0\\ \phi \end{pmatrix} L = \frac{1}{\sqrt{3}} \begin{pmatrix} \phi\\ 0 \end{pmatrix}$

Allahverdi, Enqvist, Bellido, AM, (PRL, 2006), (JCAP, 2007), Allahverdi, Kusenko, AM, JCAP (2007), Allahverdi, Dutta, AM (PRL 2007), Chatterjee, AM, JCAP (2011)

MSSM Inflaton Potentials

Potentials are constructed by small perturbations around the Enhanced Gauge Symmetry Point

Affleck, Dine, NPB (1985), Dine, Randall, Thomas, NPB (1996)

Renormalizable Potential from a Visible Sector

Inflaton decays into MSSM dof + LSP (dark matter candidate)

Allahverdi, Dutta & AM, Phys.Rev.Lett. (2007)

Non-renormalizable Potential from MSSM

Boehm, DaSilva, AM & Pukartas, PRD (2012), Wang, Pukartas & AM (hep-ph/1303.535)

MSSM dof Via Instant Preheating

$$T_{rh} = \left(\frac{30}{\pi^2 g_*}\right) \qquad \rho_{\phi}^{1/4}$$

$$\sim 3 \times 10^8 \text{ GeV} (\text{for } m_{\phi} \sim 1 \text{ TeV})$$

Allahverdi, Ferrantelli, Garcia-Bellido & AM PRD (2011)

Parameter space for Inflaton (udd) + DM within NUHM-2 scenario

Scanning NUHM-2 scenario

Correlation between Inflaton, Stau & lightest Stop

Boehm, DaSilva, AM & Pukartas, PRD (2012),

Curvaton & Inflaton from MSSM

Bench-Mark Points for Visible Sector Models of Inflation & Curvaton

With Hubble-Induced SUGRA Corrections	Inflaton	Both Inflaton & Curvaton	
\star $r < 0.11$	Inflection Point for Saddle Point for		
Relativistic dof [2]	only SM	only SM	
$f_{ m NL}^{orth} = -25 \pm 39$ [3]	< 1, ✓	Constrained, \checkmark	1
$f_{\rm NL}^{equil} = -42 \pm 75$ [3]	< 1, ✓	Constrained, \checkmark	
$f_{ m NL}^{local} = 2.7 \pm 5.8$ [3]	< 1, ✓	Constrained, \checkmark	
$dn_s/d\ln k = -0.0134 \pm 0.0090$ [4]	$\lesssim -0.002, \checkmark$	\checkmark	1
$n_s = 0.9603 \pm 0.073$ [2]	\checkmark	\checkmark	1
$10^9 P_{\zeta} = 2.196^{+0.051}_{-0.060}$ [2]	\checkmark	\checkmark	
r < 0.11 (95% CL) [4]	× Negligible, ✓	Negligible, \checkmark	1.00
Tensor-to-scalar ratio	No ali aible	No ali aible	Ī
Planck Constraints (1σ)	MSSM inflation	MSSM Curvaton	
			-

Conclusions

Last 50-60 e-folds of Inflation MUST be embedded within a VISIBLE sector

Discovery of B-modes will not only test the Inflationary paradigm but will also test the structure of Space-Time and perhaps the nature of Quantum Gravity itself

Extra Slides

ALARMINGLY LARGE NON-GAUSSINAITY DURING SINGLET PREHEATING

Longer this time span of changing e.o.s ----> Larger will be Non-Gaussianity

Enqvist, Jokinen, AM, Multamaki, Vaihkonen, Phys.Rev. Lett. (2005)

Instant Preheating Does NOT generate Non-Gaussianity $f_{NL} \ll 1$

Felder, Kofman, Linde, Phys.Rev.D (1998)

Enqvist, Jokinen, AM, Multamaki, Vaihkonen, JCAP (2005)

Inflation + Adiabatic Vacuum

Why is Quantum Gravity so kind towards us? What is the CMB telling us about the Nature of Gravity in UV?

Some Issues about Inflation

Quantization of Space Time

Would we ever see B-mode of Polarization ?

Never: If Gravity is treated Classically

Ashoorioon, Dev & AM (1211.4678)

JCAP (2012)

Note: B-modes do not require super-Planckian Inflaton VEVs such as Chaotic Inflation Hotchkiss, AM & Nadathur,

Inflection Point Inflation can do so with VeVs below the cut-off

Beyond the SM: Where to Embed the Last Phase of Inflation ?

Planck

FIG. 2: The ratio $(40m_{\phi}^2/A^2)$ as a function of $\text{Log}[\frac{\mu}{\text{GeV}}]$ in the case of *udd* flat direction. The curves are for M_{GUT} boundary values $m_{\phi} = 150, 200, 250, 300 \text{ GeV}$ (respectively from left to right), and A = 1.6 TeV.

Is there a Fine - Tuning ?

 $m_{\phi}(\phi_0), A(\phi_0)$

RG - Equations

$m_{\phi}(100 \text{ GeV}), A(100 \text{ GeV})$

FIG. 3: The ratio $(40m_{\phi}^2/A^2)$ as a function of $\text{Log}[\frac{\mu}{\text{GeV}}]$ in the case of *udd* flat direction. The curves are for M_{GUT} boundary values $A_{udd}=1.6$, 1.8, 2.0, 2.2 TeV (respectively from top to bottom), and $m_{\phi} = 400$ GeV.

Supergravity Induced Potential

$$V(\phi) = V_c + \frac{c_H H^2}{2} |\phi|^2 - \frac{a_H H}{n M_P^{n-3}} \phi^n + \frac{|\phi|^{2(n-1)}}{M_P^{2(n-3)}}$$

AM & Nadathur Phys. Rev. D (2011)

٦

Attraction Towards Inflection Point

25

Ever Changing models of Inflation

980 R*R, OLD, NEW, CHAOTIC, EXTENDED, SOFT, BRANS-DICKE, SUSY, SUGRA, THERMAL, EXPONENTIAL, DOUBLE,

HYBRID, MUTATED HYBRID, INVERTED 1990 HYBRID, F-TERM, D-TERM, K-TERM, TOPOLOGICAL, ASSISTED,

N-FLATION, BRANE, BRANE-CHAOTIC/ 2000 HYBRID, TACHYONIC, DBI, RACE-TRACK, HILL-TOP, FAST-ROLL, P-TERM, F+D-TERM, EXTENDED-HIGGS, CYCLIC, Kahler, Non-Kahler, Sweese Cheese, D3/D7, ... None of these models can actually work !!