RooStats Tutorials

Inversion of Hypothesis Tests

The Dictionary

one-to-one mapping between hypothesis test confidence intervals

Table 20.1 Relationships between hypothesis testing and interval estimation

	Property of corresponding
Property of test	confidence interval
$Size = \alpha$	Confidence coefficient = $1 - \alpha$
Power = probability of rejecting a	Probability of not covering a false
false value of $\theta = 1 - \beta$	value of $\theta = 1 - \beta$
Most powerful	Uniformly most accurate
$\leftarrow \begin{cases} Unb \\ 1-j \end{cases}$	$\left.\begin{array}{c} ased \\ \beta \geq \alpha \end{array}\right\} \longrightarrow$
Equal-tails test $\alpha_1 = \alpha_2 = \frac{1}{2}\alpha$ Central interval	

Discovery in pictu

Discovery: test b-only (n

note, one-sided

f(x|

f(x|

Kyle Cranmer (NYU)

from G. Feldman visiting Harvard statistics department

They explained that in statistical theory there is a one-toone correspondence between a hypothesis test and a confidence interval. (The confidence interval is a hypothesis test for each value in the interval.) The Neyman-Pearson Theorem states that the likelihood ratio gives the most powerful hypothesis test. Therefore, it must be the standard method of constructing a confidence interval.

Hypothesis Test Inversion

- Performing an hypothesis test at each value of the parameter
- Interval van be derived by inverting the p-value curve, function of the parameter of interest (μ)
 - value of μ which has p-value α (e.g. 0.05), is the upper limit of 1- α confidence interval (e.g. 95%)

Hypothesis Test Inversion

- use one-sided test for upper limits (e.g. one-side profile likelihood test statistics)
- use two-sided test for a 2-sided interval

Example: 1- σ interval for a Gaussian measurement_{tatistics School 2012, Desy}

HypoTestInverter class

• Input:

- Hypothesis Test calculator (e.g. FrequentistCalculator)
 - possible to customize test statistic, number of toys, etc..
 - N.B: null model is S+B, alternate is B only model
- Interval calculator class
 - scan given interval of μ and perform hypothesis tests
 - compute upper/lower limit from scan result
 - can use $CL_s = CL_{s+b} / CL_b$ for the p-value
 - store in result (HypoTestInverterResult) also all the hypothesis test results for each scanned μ value
 - possible to merge later results
- Can compute expected limits and bands

HypoTestInverter

• **HypoTestInverter** class in RooStats

// create first HypoTest calculator (N.B null is s+b model)
FrequentistCalculator fc(*data, *bModel, *sbModel);

```
HypoTestInverter calc(*fc);
calc.UseCLs(true);
```

// configure ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler();

```
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
// for CLs (bounded intervals) use one-sided profile likelihood
profll.SetOneSided(true);
toymcs->SetTestStatistic(&profll);
```

```
// configure and run the scan
calc.SetFixedScan(npoints,poimin,poimax);
HypoTestInverterResult * r = calc.GetInterval();
```

```
// get result and plot it
double upperLimit = r->UpperLimit();
double expectedLimit = r->GetExpectedUpperLimit(0);
```

```
HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r);
plot->Draw();
```

Running the HypoTestInverter

ModelConfig_with_poi_0

Profile Likelihood Ratio

ModelConfig_with_poi_0

ModelConfig

test statistic data

ModelConfig

test statistic data

Hypothesis test results for each scanned point

p-value, CL_{s+b} (or CL_b) is integral of S+B (or B) test statistic distribution from data value

Expected limit and bands are obtained by replacing data test statistic value with quantiles of the B test stat. distribution

Example of Scan

95% CL limit on a Gaussian measurement:
Gauss(x,µ,1), with µ≥0

deficit, observation x = -1.5 excess, observation x = 1.5use CL_s as p-value to avoid setting limits which are too good

8

9

Limits on bounded measurements

from Bob Cousins:

Downward fluctuations in searches for excesses

Classic example: Upper limit on mean μ of Gaussian based on measurement *x* (in units of σ).

If $\mu \ge 0$ in model, as measured x becomes increasingly negative, standard classical upper limit becomes small and then null.

Issue acute 15-25 years ago in expts to measure v_e mass in (tritium β decay): several measured $m_v^2 < 0$.

Frequentist 1-sided 95% C.L. Upper Limits, based on $\alpha = 1 - C.L. = 5\%$ (called CL_{sb} at LEP). For $x < -1.64 \sigma$ the confidence interval is the *null* set!

Bob Cousins, CMSDAS, 1/2012

Feldman-Cousins intervals

- HypoTestInverter class can compute also a Feldman-Cousins interval
 - need to use FrequentistCalculator and CL_{s+b} as p-value
 - use the 2-sided profile likelihood test statistic

Feldman-Cousins Interval

11

Asymptotic Formulae

- Use the asymptotic formula for the test statistic distributions
- For one-sided profile likelihood test statistic:
 - null model ($\mu = \mu_{\text{TEST}}$)
 - half χ^2 distribution
 - alt model ($\mu \neq \mu_{\text{TEST}}$)
 - non-central χ^2
 - use Asimov data to get the non centrality parameter λ
- p-values for null (CL_{s+b}) and alt (CL_b) can be obtained without generating toys

- expected limits can be also obtained using the alt distribution
 - → see Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1-1

Statistics School 2012, Desy 12

HypoTestInverter

• AsymptoticCalculator class in RooStats

• HypoTestCalculator class implementing the asymptotic formulae

```
// create first HypoTest calculator (N.B null is s+b model)
AsymptoticCalculator ac(*data, *bModel, *sbModel);
```

```
HypoTestInverter calc(*ac);
// run inverter same as using other calculators
......
```


RooStats Exercises (Part 2)

Getting Started

all RooStats classes are in a namespace
 recommended to add at beginning of macro:
 using namespace RooStats

This will also load automatically the RooStats library

- note that RooStats methods start with upper case letter while RooFit start with lower case
- RooStats calculator are quite verbose, useful to suppress many info messages"

RooMsgService::instance().setGlobalKillBelow(RooFit::WARNING);

Roostats reference guide: http://root.cern.ch/root/htmldoc/ROOSTATS_Index.html RooStats tutorial macros: http://root.cern.ch/root/html/tutorials/roostats

RooStats Exercise (7)

Service 7:

- Sompute limit on the exponential background model (same as Ex. 6)
- run SPlusBExpoModel.C
 - will create a file SPlusBExpoModel.root
- run the HypoTestInverter using the frequentist calculator (use macro HypoTestInverterDemo.C)
 - Iook and try to understand the code of the macro
 - one the CL_s option (especially for nobs ≤ b)
 - use one-sided profile likelihood test statistics and CLs
 - ø will take some time
 - use npoints = 5; number of points to scan
 - fc->SetToys(200,100);) number of toys
- N.B. comment line toymcs->SetNEventsPerToy(1);
 - model is from an extended pdf

RooStats Exercise (7b)

Service 7b:

- In the asymptotic calculator
 - use same macro, HypoTestInverterDemo.C but create the AsymptoticCalculator instead of the FrequentistCalculator
 - Incomment relevant code in the macro
 - pass to the AsHypoTestInverter class to the HypoTestInverter constructor
 - Iook at how the result is plotted (HypoTestInverterPlot)
 - plot->Draw(``obs''); plot only observed p-value
 - plot->Draw(); plot obs+expected limits with bands
 - ø plot->Draw("CLb 2CL"); plot CLb, CLs+b, CLs

RooStats Exercises (8)

Service 8

Solution Use Poisson model (with background)

- run macro PoissonModelWithBackg.C (generate model)
- Imit (exercise 5)
 use possibly same values (nobs, b) used for Bayesian
 (→ slide 6)
- compute 95% upper limits using the HypoTestInverter class
- use macro HypoTestInverterDemo.C
 - Iook and try to understand the code of the macro
 - one set the CL_s option (especially for nobs ≤ b)
 - Iook at how the result is plotted (HypoTestInverterPlot)
 - plot->Draw(``obs''); plot only observed p-value
 - plot->Draw(); plot obs+expected limits with bands
 - ø plot->Draw("CLb 2CL"); plot CLb, CLs+b, CLs

RooStats Exercises (8)

Option:

 compute Feldman-Cousins 95% upper limit
 use two-sided profile likelihood test statistics and CL_{s+b} instead of CL_s for p-value to scan

Option:

use instead of Poisson simple Gauss model (e.g. with N=100 or N=1)

generate it with GaussianModel.C

when using FC and GaussianModel with N=1 you can check the result with FC paper <u>http://arxiv.org/pdf/physics/9711021v2.pdf</u> or google Feldman-Cousins

Solution

- use model created with previous exercises
 use macro HypoTestInverterDemo.C passing workspace name
 - comment/uncomment code depending on exercise
- can also use the tutorials/roostats/ StandardHypoTestInvDemo.C

StandardHypoTestInvDemo.C

How does it work:

- input workspace file, workspace name
- name of S+B model (null) and for B model (alt)

• if no B model is given, use S+B model with poi = 0

- ø data set name
- options:
 - calculator type (frequentist, hybrid, or asymptotic)
 - test statistics
 - o use CL_s or CL_{s+b} for computing limit
 - o number of points to scan and min, max of interval

Searching

load the macro after having create the workspace using given macro (e.g. SPlusBExpoModel.root) **root[] .L StandardHypoTestInvDemo.C**

run for CLs (with frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,100]

root[] StandardHypoTestInvDemo("SPlusBExpoModel.root","w","ModelConfig","","data",0,3, true, 10, 0, 100)

run for Asymptotic CLs (scan 20 points in [0,100])

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",2,3, true, 20, 0, 100)

run for Feldman-Cousins (scan 10 points in [0,100])

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",0,2, false, 10, 0, 15)

Documentation and user support

- RooStats TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
- RooStats users guide (under development, to be completed)
 - <u>http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/RooStats_UsersGuide.pdf</u>
- Paper: ACAT 2010 proceedings: <u>http://arxiv.org/abs/1009.1003</u>
- ROOT reference guide: <u>http://root.cern.ch/root/htmldoc/ROOSTATS_Index.html</u>
- RooFit and RooStats tutorial macros: http://root.cern.ch/root/html/tutorials
- RooFit's users guide: http://root.cern.ch/drupal/content/users-guide
- RooStats November tutorials:
 - Lecture of L. Lista on statistics: http://indico.cern.ch/conferenceDisplay.py?confId=73545
 - Tutorial contents: http://indico.cern.ch/conferenceDisplay.py?confId=72320
- RooStats user support:
 - Request support via ROOT talk forum: http://root.cern.ch/phpBB2/viewforum.php?f=15 (questions on statistical concepts accepted)
 - Submit bugs to ROOT Savannah: https://savannah.cern.ch/bugs/?func=additem&group=savroot
- Contacts for statistical questions:
 - ATLAS statistics forum: hn-atlas-physics-Statistics@cern.ch (Cowan, Gross et al)
 - TWiki: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools
 - CMS statistics committee: (Cousins, Demortier et al)
 - via hypernews: hn-cms-statistics@cern.ch or directly: cms-statistics-committee@cern.ch