Control Loop Characteristics	Architecture of the system	Tests 0000	

Precision regulation for SRF cavities using MTCA.4

Igor Rutkowski, R. Rybaniec¹ Ł. Butkowski, C. Schmidt, M. Hoffmann² M. Kuntzsch, H. Büttig, R. Schurig³

> ¹Warsaw University of Technology Institute of Electronic Systems ²Deutsches Elektronen-Synchrotron ³Helmholtz-Zentrum Dresden-Rossendorf

11.12.2014

	Control Loop Characteristics	Architecture of the system	Tests 0000	
Outline				

- **2** Control Loop Characteristics
- 3 Architecture of the system

4 Tests

Layout of ELBE Signals' quality Measurements

6 Future plans

- ₹ 🖹 🕨

Ξ.

Distrubances	Control Loop Characteristics	Architecture of the system	Tests	Future plans

- Ontrol Loop Characteristics
- Output Architecture of the system
- 4 Tests
- **6** Future plans

문어 세 문어

Ξ.

Distrubances	Control Loop Characteristics	Architecture of the system	Tests 0000	Future plans
C	Culture because			

Sources of distrubances

- Cavity dynamics (filling/decay)
- Change of resonance frequency
 - Microphonics
 - Lorentz force detuning
 - Thermal effects (power dependent)
- Beam loading
 - Pulsed beam transient
 - Beam current fluctuation
- Quality of drive signal
 - Master Oscillator signal's fidelity
 - High power amplfiers' noise and distortions
 - Feedback system response
- Other
 - Drifts (cabling, electronics, power amplifiers)

Sources of distrubances in CW

- Cavity dynamics (filling/decay)
- Change of resonance frequency
 - Microphonics
 - Lorentz force detuning
 - Thermal effects (power dependent)
- Beam loading
 - Pulsed beam transient
 - Beam current fluctuation
- Quality of drive signal
 - Master Oscillator signal's fidelity
 - High power amplfiers' noise and distortions
 - Feedback system response
- Other
 - Drifts (cabling, electronics, power amplifiers)

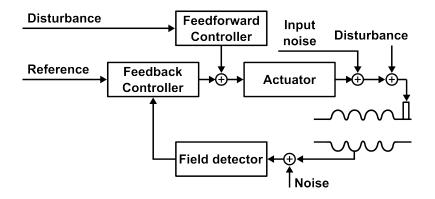
Control Loop Characteristics	Architecture of the system	Tests	

2 Control Loop Characteristics

Output Architecture of the system

4 Tests

6 Future plans


물에 비용하다

2

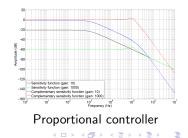
→ < ∃→

2

Control loop block diagram

	Control Loop Characteristics	Architecture of the system	Tests 0000	
Loop si	mulations			

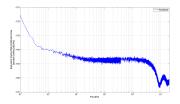
Cavity model


The transfer function of the cavity for π -mode is equal to

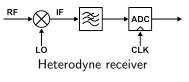
$$H_{cav}(s) = \frac{\omega_{1/2}}{\Delta\omega^2 + (s + \omega_{1/2})^2} \begin{pmatrix} s + \omega_{1/2} & -\Delta\omega \\ \Delta\omega & s + \omega_{1/2} \end{pmatrix}$$

where
$$\omega_{1/2} = \frac{w_0}{2*Q_l}$$
, $\Delta \omega = \omega_0 - \omega$ is the detuning

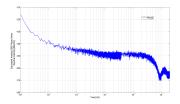
Transfer Function


Sensitivty TF: from disturbance input to system output Complementary sensitivity TF: reference signal/resiudal detector noise to the system's output

Distrubances	Control Loop Characteristics	Architecture of the system	Tests	Future plans
ter in the second				


Field detection

- Possibilities: direct sampling, amplitude and phase detection, direct demodulation, heterodyne receiver, and others
- Considerations: noise, price, long term stability



Amplitude noise - bandwidth [100 Hz- 1MHz]. Integrated: 5E-6

U. Mavric, et al., "Multi-Channel Down-Conversion for MicroTCA.4 Based Control Systems," in Proc. of the 2014 Real-Time Conf.

+Low noise, good linearity

Phase noise - bandwidth [100 Hz-1MHz]. Integrated: 7 fs.

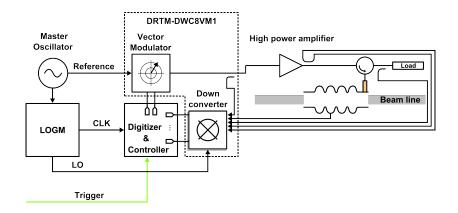
Control Loop Characteristics	Architecture of the system	Tests	Future plans

Ontrol Loop Characteristics

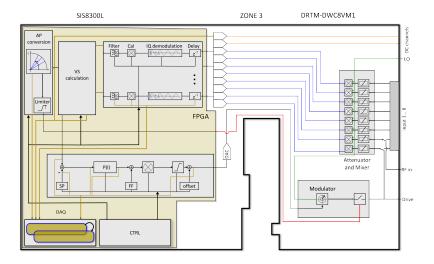
3 Architecture of the system

4 Tests

6 Future plans


< ∃⇒

æ


글 🖌 🔺 글 🕨

3

Schematic block diagram of LLRF system (one cavity)

FW/HW Block diagram

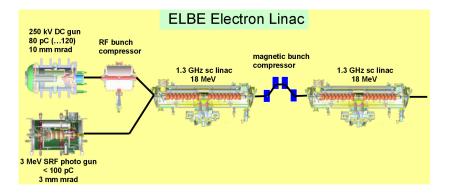
Courtesy of Christian Schmidt, with later modifications.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Control Loop Characteristics	Architecture of the system	Tests	Future plans

- **2** Control Loop Characteristics
- **3** Architecture of the system

4 Tests


Layout of ELBE Signals' quality Measurements

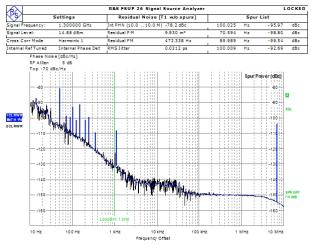
6 Future plans

▶ < ∃ >

2

	Control Loop Characteristics	Architecture of the system	Tests	
			0000	
Layout of ELBE				
Lavout c	of FLBF			

Source: Peter Michel "ELBE Upgrade ", ARD Workshop February 2013


イロト イポト イヨト イヨト

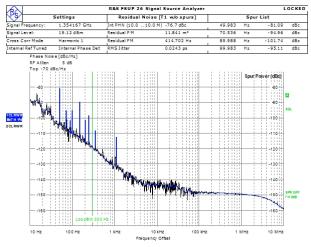
3

0000

Reference and LO

New MO

Measurement Complete

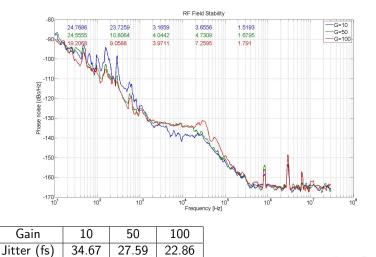

1/2 Link locked, 3/4 Link unlocked

- ▲ 臣 ▶ = − ∽ � � �

Signals' quality

Reference and LO

Mixer based LOGM


Measurement Complete

1/2 Link locked, 3/4 Link unlocked

▲ 臣 ▶ □ 臣 → 釣んで

	Control Loop Characteristics	Architecture of the system	Tests	Future plans
			0000	
Measurements				
Cavity 1				

Gradient 10.5 MV/m and 800 uA beam.

Igor Rutkowski

< (T) >

æ

-∢ ≣⇒

Control Loop Characteristics	Architecture of the system	Tests	Future plans
	Control Loop Characteristics	Control Coop Characteristics Architecture of the system	

- Ontrol Loop Characteristics
- 3 Architecture of the system
- 4 Tests

5 Future plans

< ∃⇒

æ

Distrubances	Control Loop Characteristics	Architecture of the system	Tests	Future plans
			0000	

- Automated in-loop gradient ramp up
- Long-term tests
- Control system integration (MTCA4U)
- Real-time beam loading compensation

< 注→ 注

Acknowledgments

- HZDR team, esp. Michael Kuntzsch, Hartmut Büttig, Ulf Lehnert, **Rico Schurig**
- Maciej Grzegrzółka setting up the system
- Radek Rybaniec, Łukasz Butkowski Firmware
- Christian Schmidt, Matthias Hoffmann, Sven Pfeiffer, Wojtek Cichalewski - control theory, cavity operation, beam-based FB, IQ detection, experience as operators

	Control Loop Characteristics	Architecture of the system	Tests 0000	
Questions				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Control Loop Characteristics	Architecture of the system	Tests	

Thank You for attention!

イロン イヨン イヨン イヨン