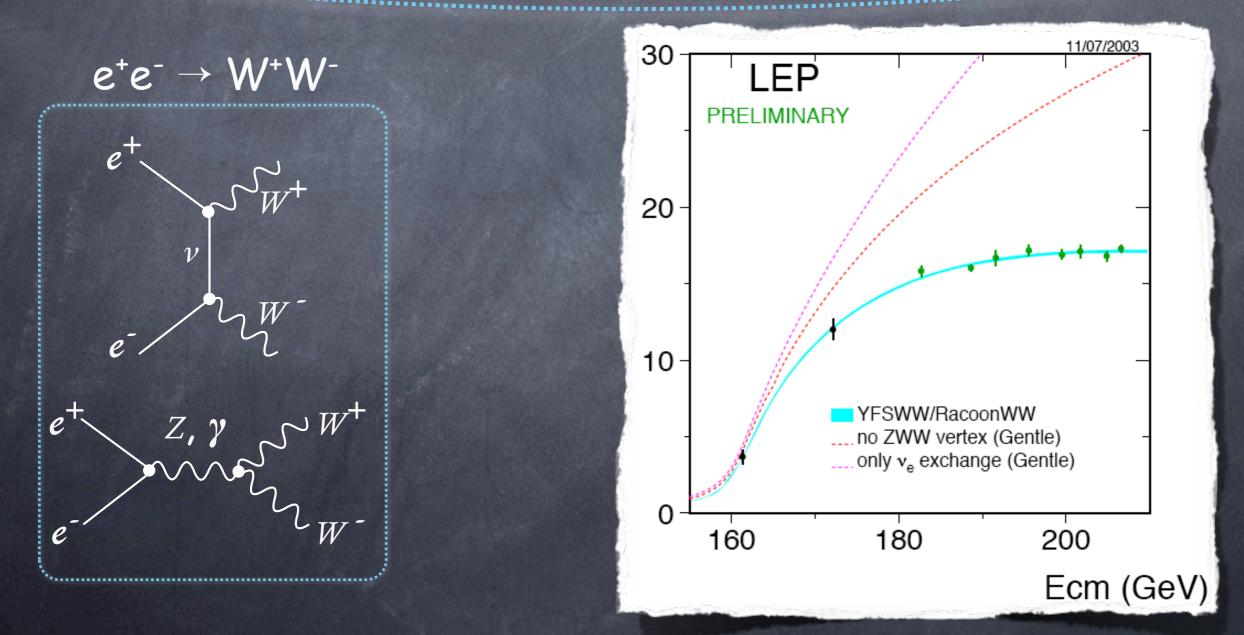
New Physics: Theoretical Developments

Lepton-Photon 2009 Hamburg, August 17-22, 2009


Christophe Grojean CERN-TH & CEA-Saclay-IPhT

(Christophe.Grojean[at]cern.ch)

The Standard Model

the strong, weak and electromagnetic interactions of the elementary particles are described by gauge interactions $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

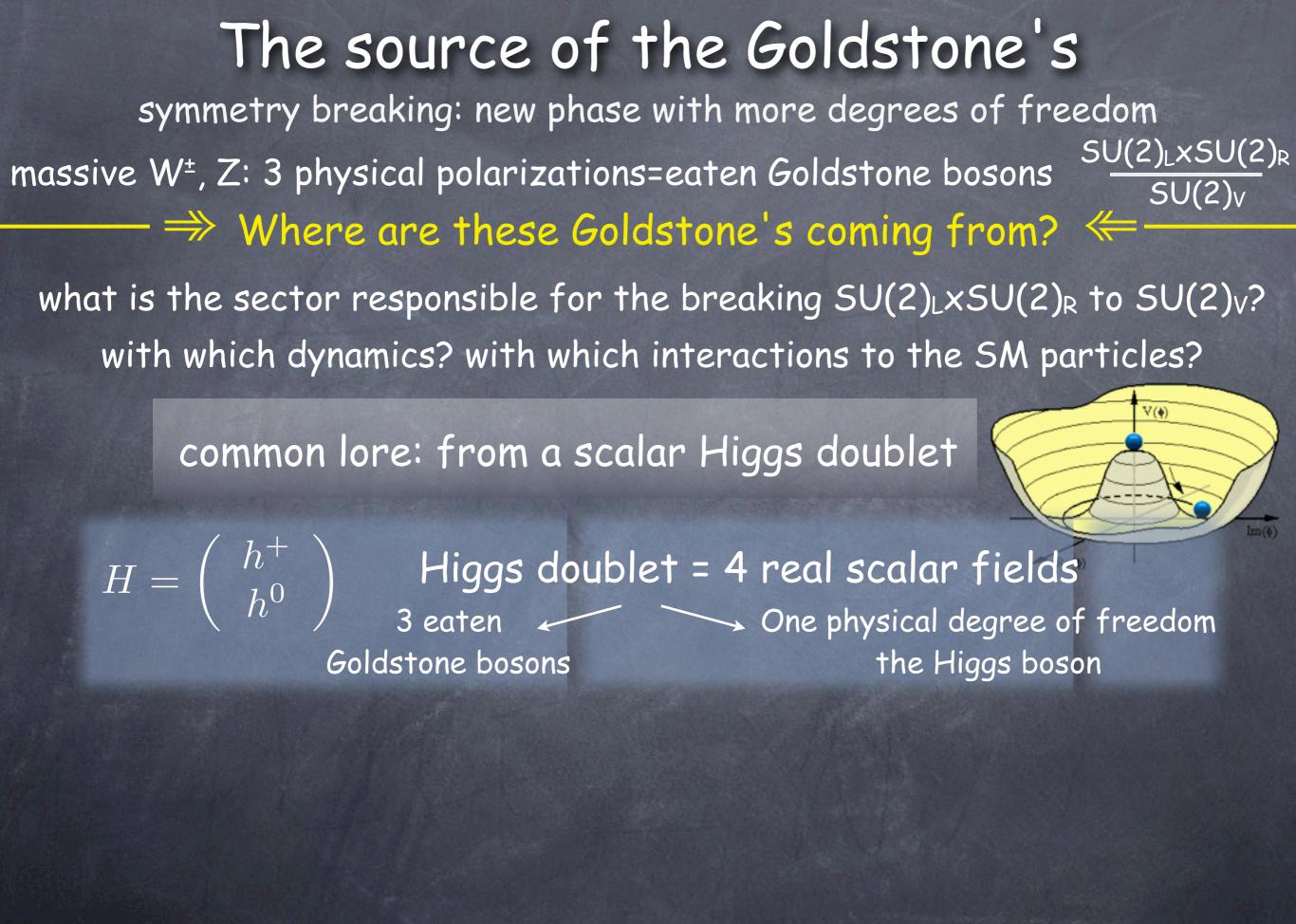
Christophe Grojean

New Physics: Theoretical Developments

The Standard Model and the Mass Problem

the strong, weak and electromagnetic interactions of the elementary particles are described by gauge interactions $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

the masses of the quarks, leptons and gauge bosons don't obey the full gauge invariance


 \bigotimes $\left(egin{array}{c}
u_e \\
e \end{array}
ight)$ is a doublet of SU(2)_L but $m_{
u_e} \ll m_e$

a mass term for the gauge field isn't invariant under gauge transformation $\delta A^a_\mu = \partial_\mu \epsilon^a + g f^{abc} A^b_\mu \epsilon^c$

spontaneous breaking of gauge symmetry

Christophe Grojean

New Physics: Theoretical Developments

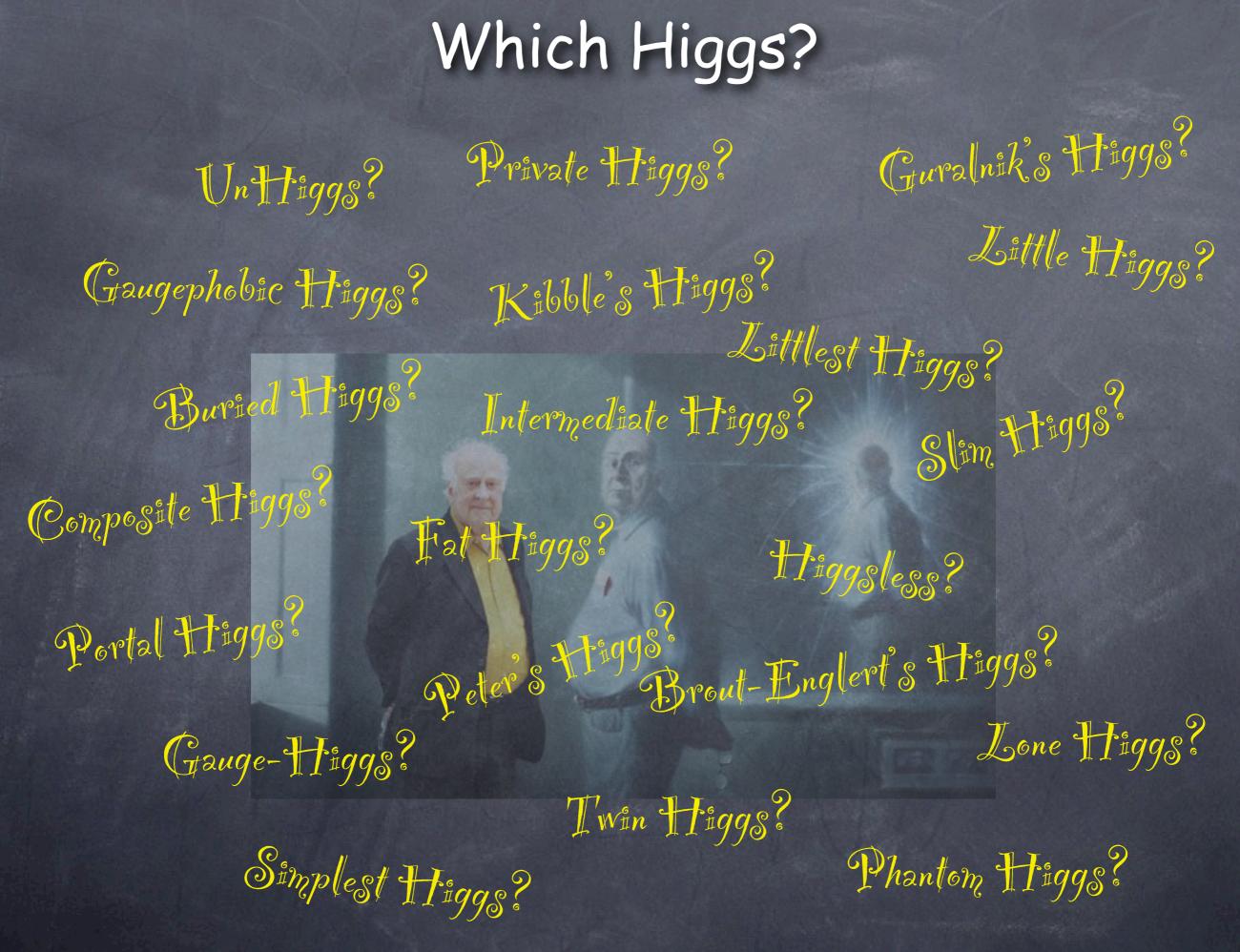
Christophe Grojean

New Physics: Theoretical Developments

The source of the Goldstone's symmetry breaking: new phase with more degrees of freedom $SU(2)_L \times SU(2)_R$ massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $SU(2)_{V}$ ⇒ Where are these Goldstone's coming from? $\nabla(\phi)$ common lore: from a scalar Higgs doublet $H = \left(\begin{array}{c} h^+ \\ h^0 \end{array}\right)$ Im() Higgs doublet = 4 real scalar fields 3 eaten One physical degree of freedom Goldstone bosons the Higgs boson IO^{meas}-O^{fit}I/o^{meas} Good $\Delta \alpha_{had}$ 1875 + 0.002191 1874 5 Γ₋[GeV $.4952 \pm 0.0023$ -0.02758±0.00035 41 540 + 0 037 ••••• 0.02749±0.00012 agreement 20.767 ± 0.025 ••• incl. low Q² data 4 [∠]χ₂ 3 with EW data 0.1037 But the Higgs 0.0742 2 923 + 0.0200.935 0.668 0.670 + 0.027(doublet $\Leftrightarrow \rho$ =1) 1513 ± 0.0021 0 1480 hasn't been 0 2314 2324 + 0 0012 80 377 0 2115 ± 0.058 2.092 100 300 30 173.3 172.7 ± 2.9 seen yet... $m_{\!_{\!H}}$ [GeV] other origins of the Goldstone's: condensate of techniquarks, A5...

Christophe Grojean

New Physics: Theoretical Developments


Deformations of SM

Why a single Higgs doublet? why not? usual simplicity/minimality argument. more Higgs doublets could be dangerous: more complicated vacuum structure possible Higgs-mediated FCNCs

> a flow, at low energy, towards a doublet seems a desirable feature

Christophe Grojean

New Physics: Theoretical Developments

Christophe Grojean

New Physics: Theoretical Developments

What is the SM Higgs?

W_L, Z_L are Goldstone bosons ~ pions of QCD $\Sigma = e^{i\sigma^a \pi^a/v}$ A single scalar degree of freedom with no charge under SU(2)_LxU(1)_Y

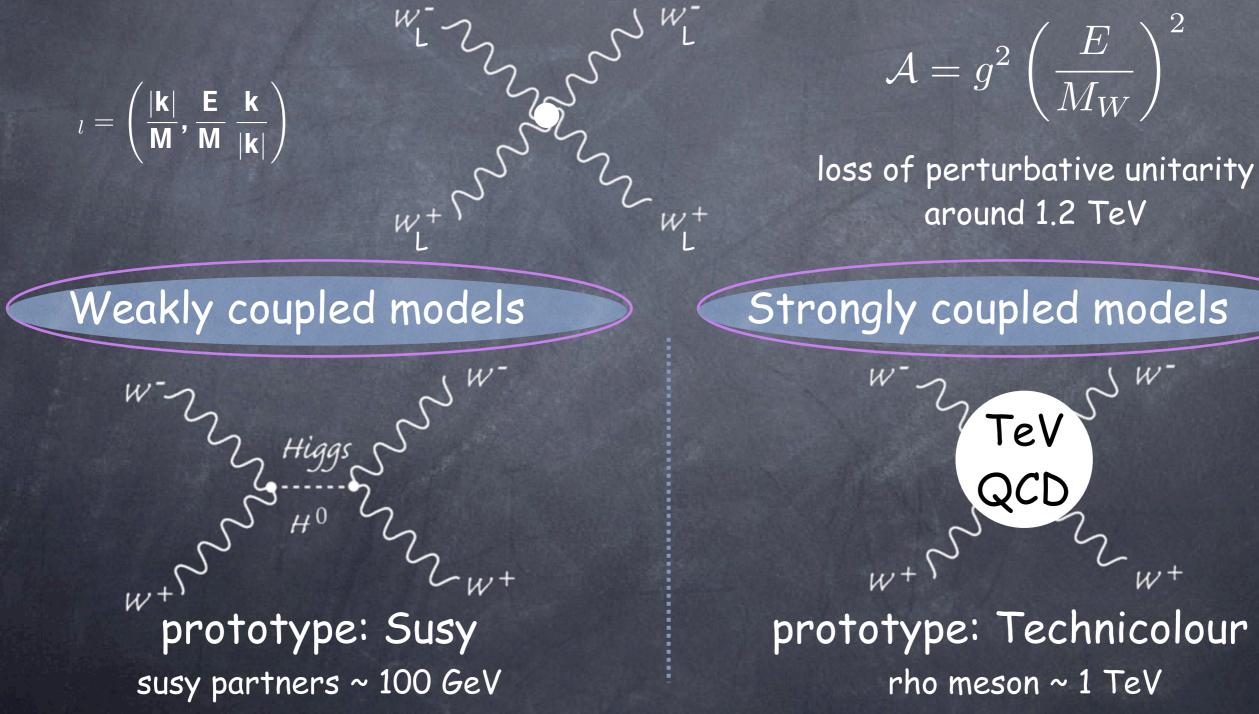
$$\mathcal{L}_{\text{EWSB}} = a \, \frac{v}{2} \, h \, \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) + b \, \frac{1}{4} \, h^2 \, \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right)$$

'a' and 'b' are arbitrary free couplings

 $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s - m_h^2} \end{pmatrix}$ $\mathcal{A} = \frac{1}{v^2} \begin{pmatrix} s - \frac{a^2 s^2}{s$

For $b = a^2$: perturbative unitarity also maintained in inelastic channels (WW \rightarrow hh)

'a=1' & 'b=1' define the SM Higgs = $\mathcal{L}_{
m mass} + \mathcal{L}_{
m EWSB}$ can be rewritten as $D_{\mu}H^{\dagger}D_{\mu}H$


$$H = \frac{1}{\sqrt{2}} e^{i\sigma^a \pi^a / v} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$

h and π^a (ie W_L and Z_L) combine to form a linear representation of SU(2)_LxU(1)_Y

Christophe Grojean

New Physics: Theoretical Developments

What is the mechanism of EWSB? we need to understand not only the origin of the Goldstone's but also What is unitarizing the WW scattering amplitudes? WL & ZL part of EWSB sector \supset W scattering is a probe of Higgs sector interactions

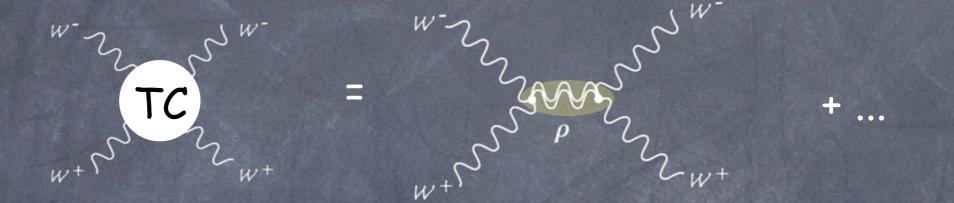
Christophe Grojean

New Physics: Theoretical Developments

Solving the SUSY Little Hierarchy Pb

SUSY need new (super)particles that haven't been seen yet SUSY (at least MSSM) predicts a very light Higgs

More scalars: NMSSM and friends Fayet '76 + 0(500) papers More gauge fields (with new non-decoupled D-terms) Batra, Delgado, Kaplan, Tait '03 + 0(10) papers \odot Low scale susy breaking mediation (Λ ~100 TeV) Casas, Espinosa, Hidalgo '03 + 0(50) papers More symmetry: (super-little) Higgs as a Goldstone boson Birkedal, Chacko, Gaillard '04 + 0(20) papers More interactions parametrized by higher dimensional terms: BMSSM Strumia '99; Dine, Seiberg, Thomas '07 allow for heavier Higgs and much lighter susy (stops) particles cf. Pokorski's
 (meta)stable EW vacuum Blum, Delaunay, Hochberg '09
 window for MSSM baryogeneric $W_{
m BMSSM} = rac{\lambda_1}{M} (H_u H_d)^2 + rac{\lambda_2}{M} Z_{
m soft} (H_u H_d)^2$ + no modification to Khaler potential LSP can account for DM relic density in larger region of parameter space Bernal. Blum. Nir '09


Christophe Grojean

New Physics: Theoretical Developments

Strongly coupled models

a phenomenological challenge: how to evade EW precision data

The resonance that unitarizes the WW scattering amplitudes

generates a tree-level effect on the SM gauge bosons self-energy \hat{S} parameter of order $m_W^2/m_{
ho}^2$ In trouble with EW precision data from LEP W 3 MARAN B

a theoretical challenge: need to develop tools to do computation

Christophe Grojean

New Physics: Theoretical Developments

Hamburg, August '09

 $\hat{S} \sim \frac{m_W^2}{m_\rho^2}$ $\hat{|S|} < 10^{-3}$ @ 95% CL $m_\rho > 2.5 \text{ TeV}$

Holographic Approach to Strong Sector

"AdS/CFT" correspondence for model-builder

 $g_{\rm SM}$

SM

Warped gravity with fermions and gauge field in the bulk and Higgs on the brane

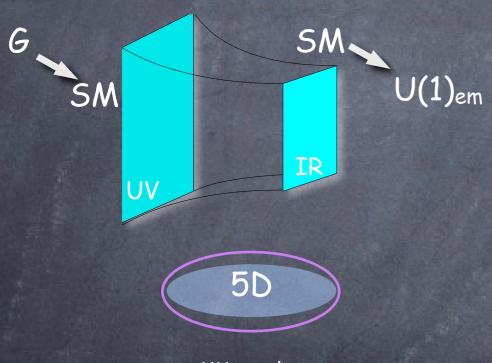
Strongly coupled theory with slowly-running couplings in 4D

proto-Yukawa

gauge

 $g^2_{\scriptscriptstyle
m SM}/g_
ho$

4D


vector resonances (ρ mesons in QCD)

RG flow

UV cutoff

global sym.

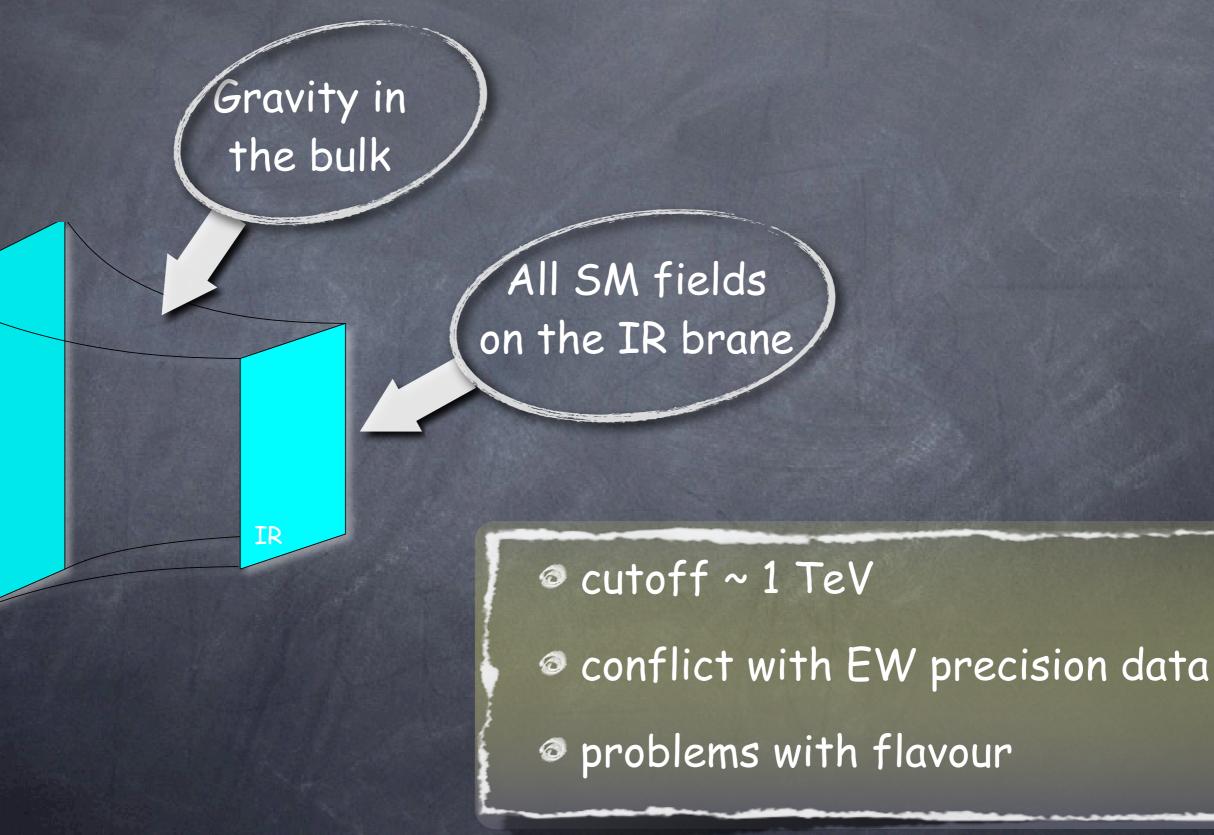
break. of conformal inv.

KK modes motion along 5th dim UV brane IR brane bulk local sym.

Christophe Grojean

New Physics: Theoretical Developments

Hamburg, August '09


 $g_{
ho}$

Strong

BSM

Holographic Models of EWSB

Original Randall-Sundrum proposal: '99

Christophe Grojean

UV

New Physics: Theoretical Developments

Holographic Models of EWSB

Bulk gauge fields: Pomarol, '00 Holographic technicolor=Higgsless: Csaki et al., '03 Holographic composite Higgs: Agashe et al., '04

Gauge fields + fermions in the bulk

IR

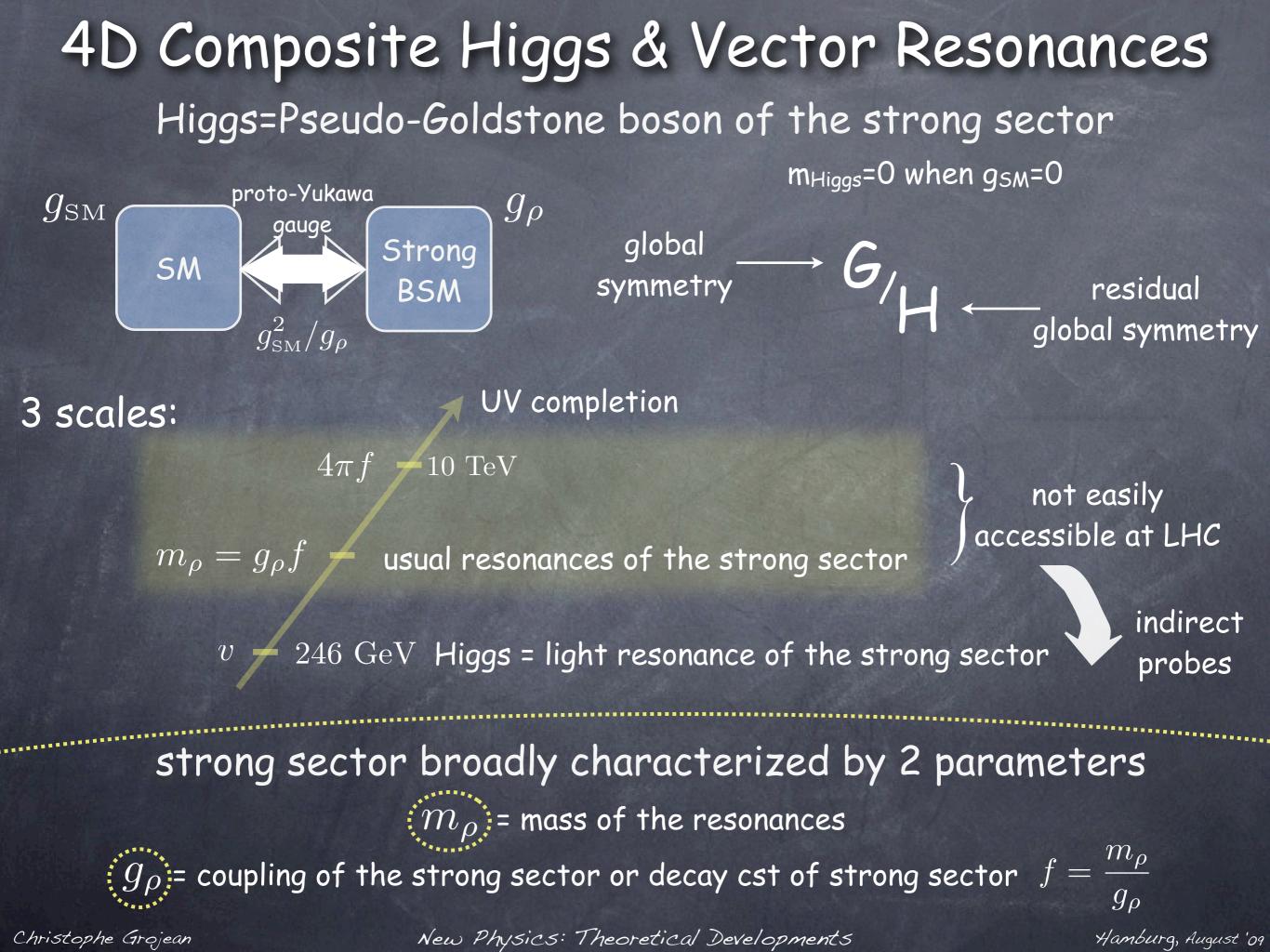
Higgs on the IR brane or Gauge breaking by boundary conditions

 $G=SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$ $G=SO(5) \times U(1)_{X}$ $G=SO(6) \times U(1)_{X}$

Christophe Grojean

UV

OV completion: log running of gauge couplings


- Ø Dynamical 'explanation' of fermion masses
- Built-in flavour structure

Composite Higgs Models

5D gives concrete models
4D physics can be studied in a model independent way

Christophe Grojean

New Physics: Theoretical Developments

Continuous interpolation between SM and TC

 $\xi = \frac{v^2}{f^2} = \frac{(\text{weak scale})^2}{(\text{strong coupling scale})^2}$

SM limit

U = 3

all resonances of strong sector, except the Higgs, decouple

Technicolor limit

 $\xi = 1$

Higgs decouple from SM; vector resonances like in TC

$$\mathcal{L}_{\text{EWSB}} = \left(a \, \frac{v}{2} \, h \, + b \, \frac{1}{4} \, h^2\right) \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right)$$

Composite Higgs universal behavior for large f a=1-ξ/2 b=1-2ξ

New Physics: Theoretical Developments

Dilaton

b=a²

Hamburg, August '09

Composite Higgs vs. SMILtiggs

Christophe Grojean

0

Christophe Grojean

New Physics: Theoretical Developments

EWPT constraints

removed by custodial symmetry

There are also some 1-loop IR effects

 $\hat{S} = (c_W + c_B) \frac{m_W^2}{m^2} \implies (m_\rho \ge (c_W + c_B)^{1/2} \ 2.5 \ \text{TeV}$

Barbieri, Bellazzini, Rychkov, Varagnolo '07

 $\hat{S}, \hat{T} = a \log m_h + b$ modified Higgs couplings to matter $\hat{S}, \hat{T} = a \left((1 - c_H \xi) \log m_h + c_H \xi \log \Lambda \right) + b$ effective $m_h^{e\!f\!f} = m_h \left(\frac{\Lambda}{m_h} \right)^{c_H v^2/f^2} > m_h$ Higgs mass

LEPII, for m_h~115 GeV: $c_H v^2/f^2 < 1/3 \sim 1/2$

 $\hat{T} = c_T \frac{v^2}{f^2}$ $\implies |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$

lower bound on the Higgs compositeness scale

IR effects can be cancelled by heavy fermions (model dependent)

Christophe Grojean

New Physics: Theoretical Developments

Flavor Constraints

mass terms

 $\left(1 + \frac{c_{ij}|H|^2}{f^2}\right) y_{ij}\bar{f}_{Li}Hf_{Rj} = \left(1 + \frac{c_{ij}v^2}{2f^2}\right) \frac{y_{ij}v}{\sqrt{2}}\bar{f}_{Li}f_{Rj}$

Higgs fermion interactions

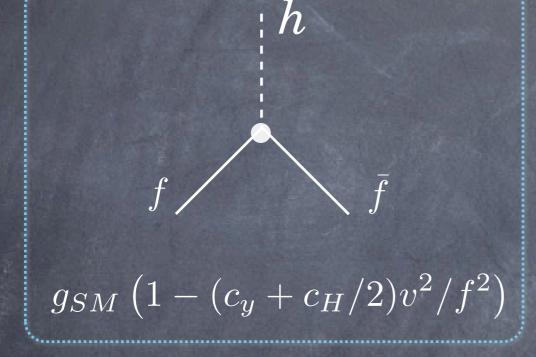
mass and interaction matrices are not diagonalizable simultaneously if c_{ij} are arbitrary FCNC mediated by Higgs exchange «=

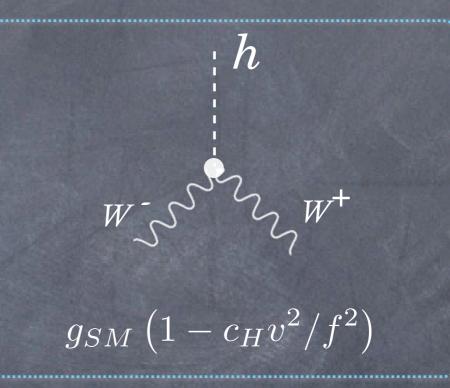
> SILH: c_y is flavor universal \Rightarrow Minimal flavor violation built in \Leftarrow

SM fermions = partially composite rationale for mass hierarchy + built-in GIM suppression of FCNC's

Christophe Grojean

New Physics: Theoretical Developments


Hamburg, August '09


 $+\left(1+\frac{3c_{ij}v^2}{2f^2}\right)\frac{y_{ij}}{\sqrt{2}}h\bar{f}_{Li}f_{Rj}$

Higgs anomalous couplings

Lagrangian in unitary gauge

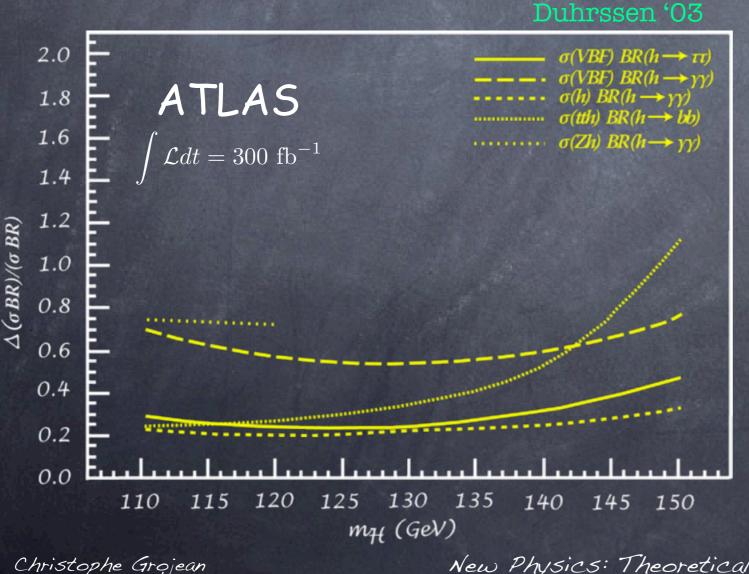
$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left(-\frac{m_H^2}{2v}(c_6 - 3c_H/2)h^3 + \frac{m_f}{v}\bar{f}f(c_y + c_H/2)h - c_H\frac{m_W^2}{v}hW_{\mu}^+W^{-\mu} - c_H\frac{m_Z^2}{v}hZ_{\mu}Z^{\mu}\right)\frac{v^2}{f^2}$$

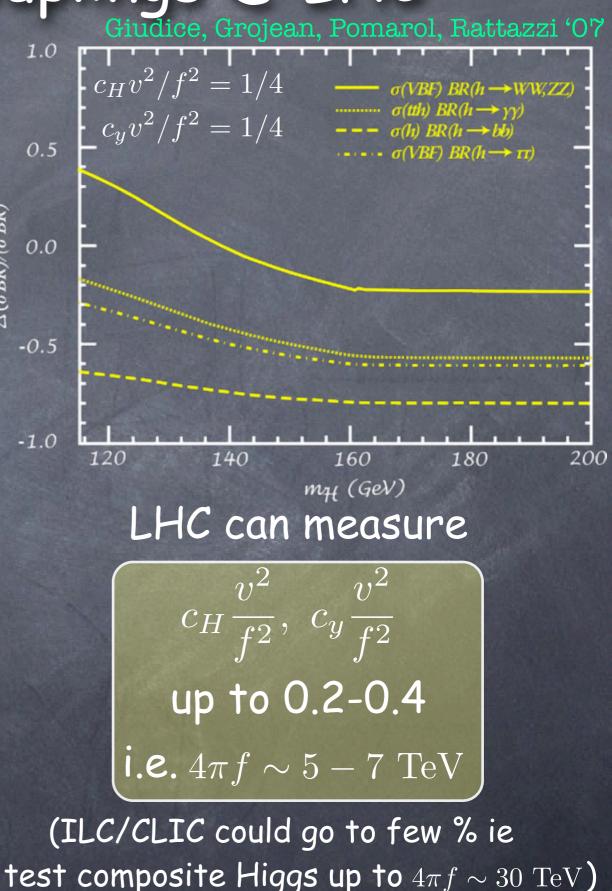
M

$$\begin{split} & \underbrace{\mathbf{\hat{N}}} \\ & \Gamma \left(h \to f\bar{f} \right)_{\mathrm{SILH}} = \Gamma \left(h \to f\bar{f} \right)_{\mathrm{SM}} \left[1 - \left(2c_y + c_H \right) v^2 / f^2 \right] \\ & \Gamma \left(h \to gg \right)_{\mathrm{SILH}} = \Gamma \left(h \to gg \right)_{\mathrm{SM}} \left[1 - \left(2c_y + c_H \right) v^2 / f^2 \right] \end{split}$$

Note: same Lorentz structure as in SM. Not true anymore if form factor ops. are included

Christophe Grojean

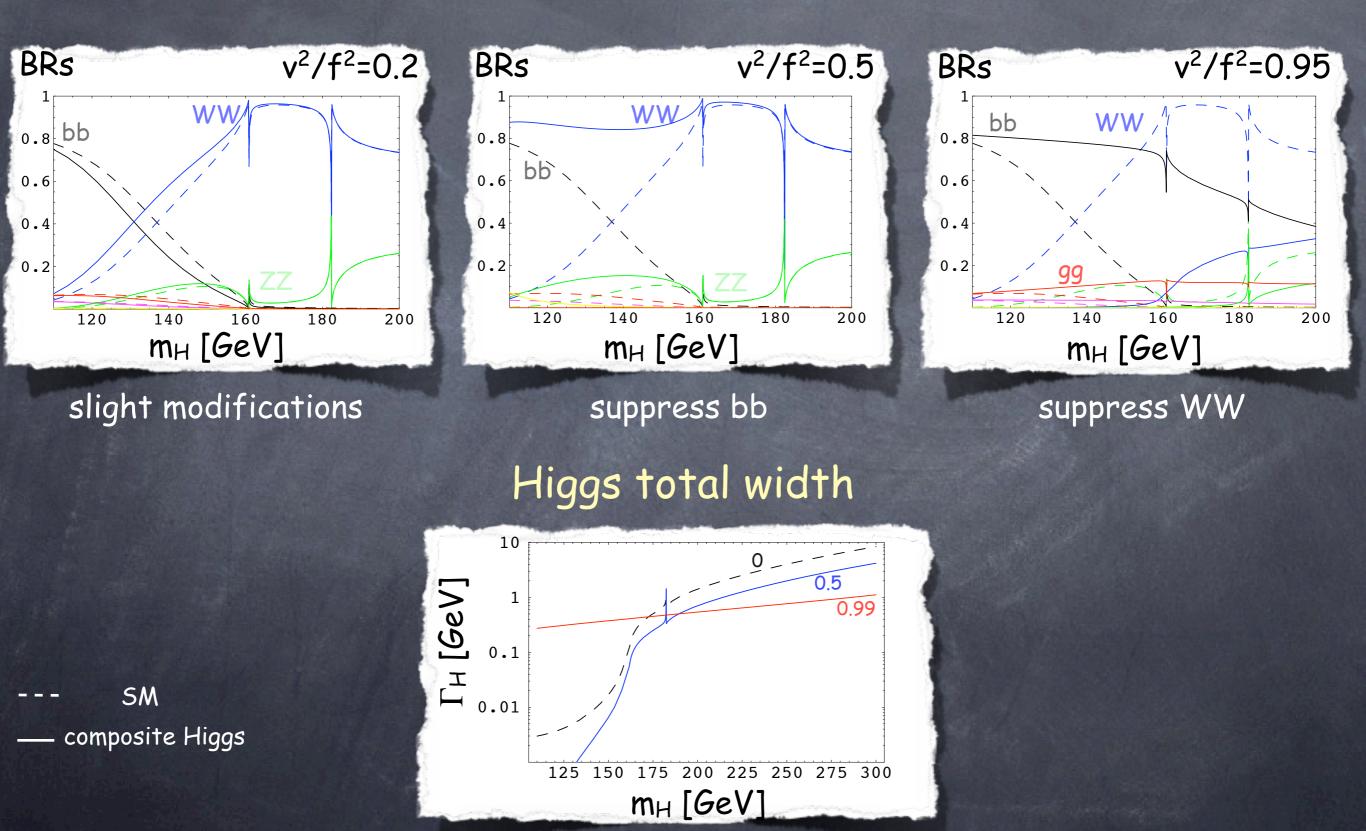

New Physics: Theoretical Developments


Higgs anomalous couplings @ LHC

 $\int (\sigma BR)/(\sigma BR)$

 $\Gamma \left(h \to f\bar{f} \right)_{\text{SILH}} = \Gamma \left(h \to f\bar{f} \right)_{\text{SM}} \left[1 - \left(2c_y + c_H \right) v^2 / f^2 \right]$ $\Gamma (h \to gg)_{\rm SILH} = \Gamma (h \to gg)_{\rm SM} \left[1 - (2c_y + c_H) v^2 / f^2 \right]$

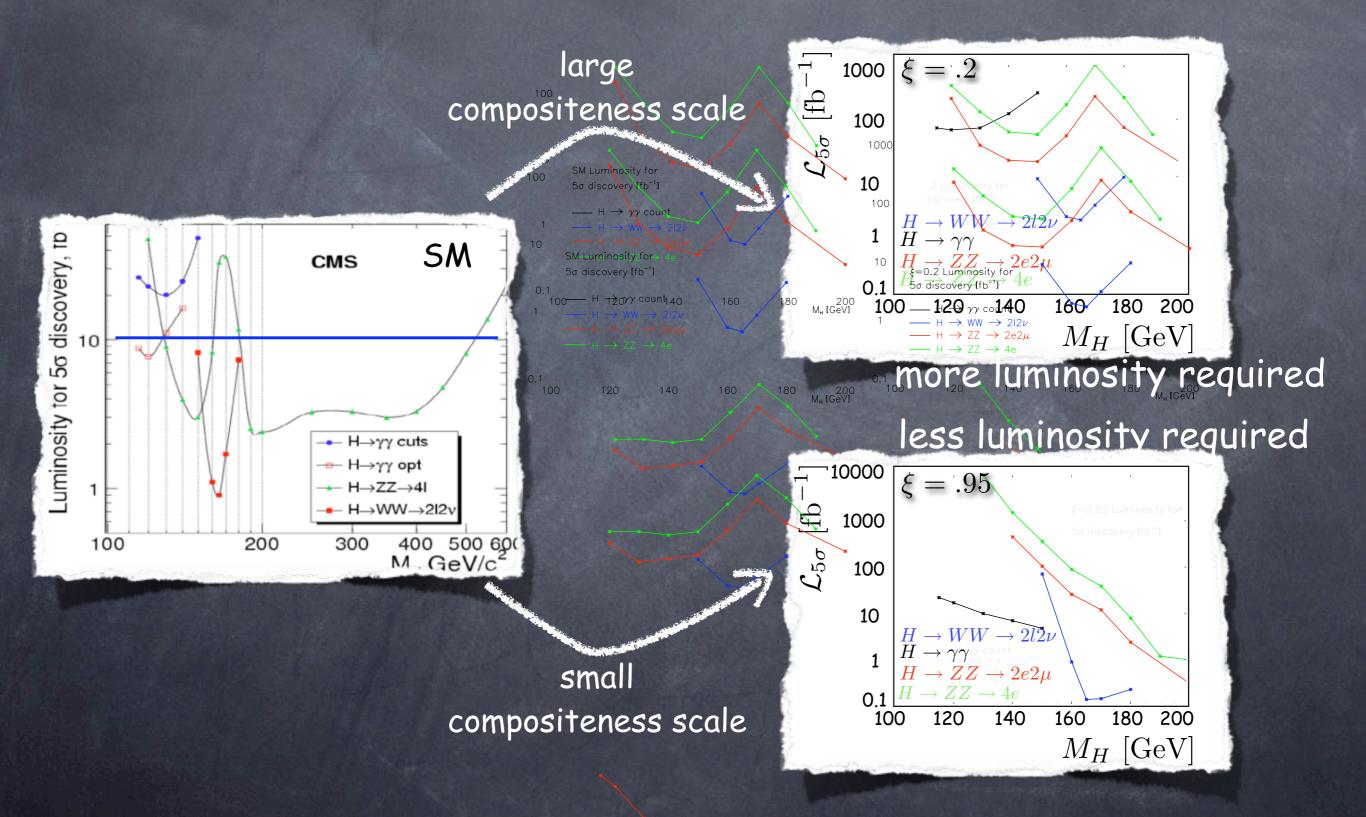
observable @ LHC?



Hamburg, August '09

New Physics: Theoretical Developments

Higgs' BRs and Total Width MCHM5D (Continuet al. '04) with fermions embedded in 5+10 of SO(5)

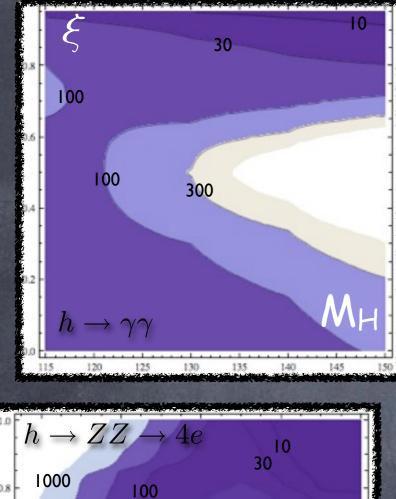

Christophe Grojean

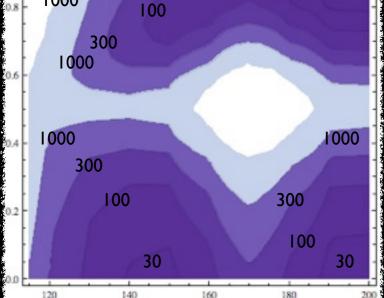
New Physics: Theoretical Developments

Composite Higgs search @ LHC

the modification of Higgs couplings and BRs affects the Higgs search

Espinosa, Grojean, Muehlleitner 'in progress

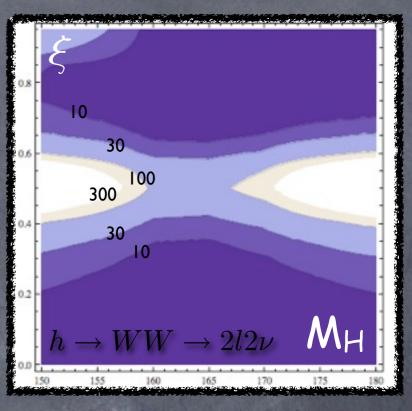



Christophe Grojean

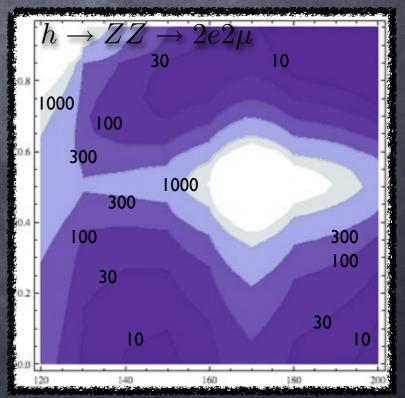
New Physics: Theoretical Developments

Composite Higgs search @ LHC

the modification of Higgs couplings and BRs affects the Higgs search

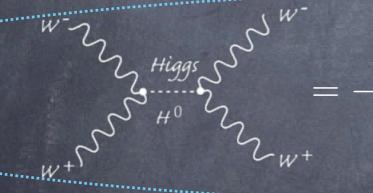

Christophe Grojean

contour lines of luminosity needed for 50 discovery in the (ξ, M_H) plane



(neglect effects from heavy resonances)

New Physics: Theoretical Developments


Espinosa, Grojean, Muehlleitner 'in progress

Strong WW scattering

Giudice, Grojean, Pomarol, Rattazzi '0? $\mathcal{L} \supset \frac{\mathcal{C}_H}{2f^2} \partial^{\mu} \left(|H|^2 \right) \partial_{\mu} \left(|H|^2 \right) \qquad c_H \sim \mathcal{O}(1)$ $H = \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix} \longrightarrow \mathcal{L} = \frac{1}{2} \left(1 + c_H \frac{v^2}{f^2} \right) (\partial^{\mu} h)^2 + \dots$

Modified
Higgs propagatorHiggs couplings
rescaled by111</th

$$(1-\xi)g^2rac{E^2}{M_W^2}$$

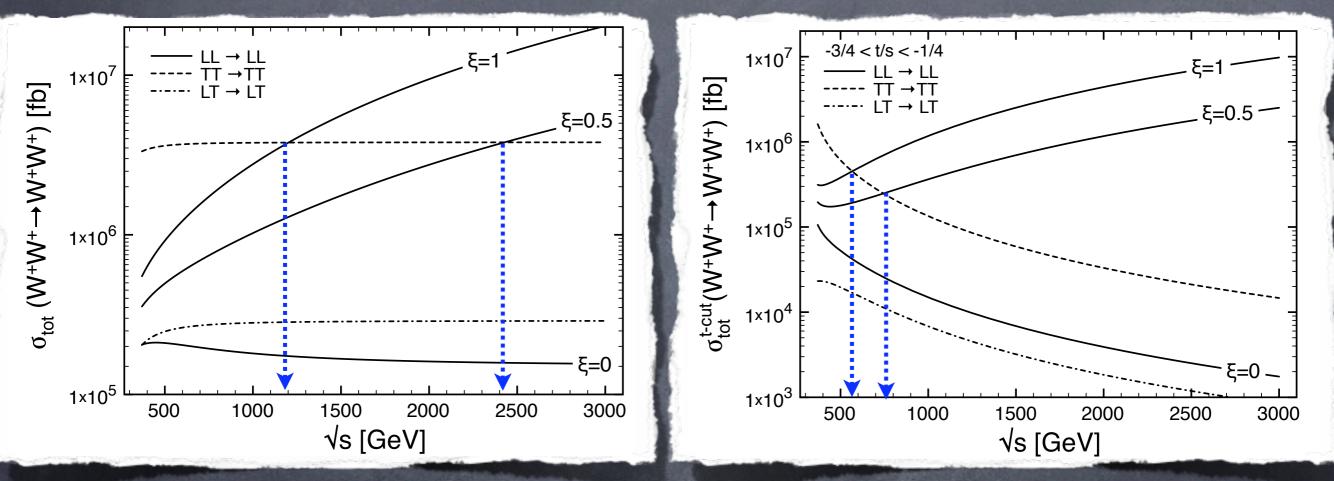
no exact cancellation of the growing amplitudes

Even with a light Higgs, growing amplitudes (at least up to m_{ρ}) $\mathcal{A}(W_{L}^{a}W_{L}^{b} \rightarrow W_{L}^{c}W_{L}^{d}) = \mathcal{A}(s,t,u)\delta^{ab}\delta^{cd} + \mathcal{A}(t,s,u)\delta^{ac}\delta^{bd} + \mathcal{A}(u,t,s)\delta^{ad}\delta^{bc}$ $\mathcal{A}_{LET}(s,t,u) = \frac{s}{v^{2}}$ $\mathcal{A}_{\xi} = \frac{s}{f^{2}}$ unitarity restored by the exchange of heavy vector resonances

Christophe Grojean

New Physics: Theoretical Developments

Hamburg, August '09

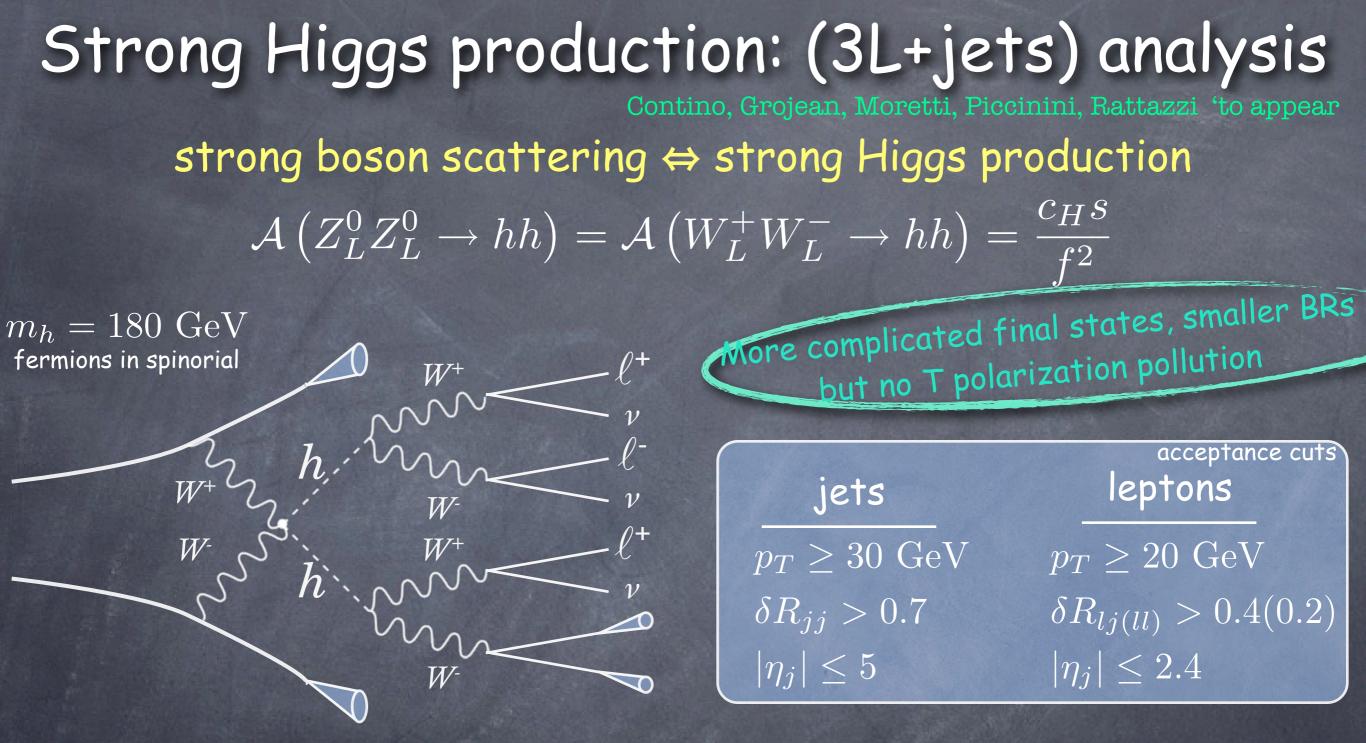

Falkowski, Pokorski, Roberts '07

Onset of Strong Scattering

Contino, Grojean, Moretti, Piccinini, Rattazzi 'to appearNDA estimates: $(\mathcal{A}_{TT \rightarrow TT} \sim g^2) \sim (\mathcal{A}_{LL \rightarrow LL} \sim s/v^2) @ \sqrt{s} \sim 2M_W$ but disorteraling L from T relevization is bond

but disentangling L from T polarization is hard

because of the structure of the amplitudes (Coulomb enhancement)


The onset of strong scattering is delayed to larger energies due to the dominance of TT \rightarrow TT background

The dominance of T background will be further enhanced by the pdfs since the luminosity of W_T inside the proton is $log(E/M_W)$ enhanced

With LHC energy, access to strong scattering is difficult

Christophe Grojean

New Physics: Theoretical Developments

Dominant backgrounds: $W\ell\ell4j$, $\bar{t}tW2j$, $\bar{t}t2W$, 3W4j...

forward jet-tag, back-to-back lepton, central jet-veto

v/f	1	$\sqrt{.8}$	$\sqrt{.5}$
significance (300 fb^{-1})	4.0	2.9	1.3
luminosity for 5σ	450	850	3500

good motivation for SLHC

Christophe Grojean

New Physics: Theoretical Developments

Fermion Partners

The couplings of gauge bosons to fermions receive corrections the heavier the fermion, the bigger the correction expect O(10%) deviation in Zb_Lb_L , beyond exp. bound

custodial symmetry might be helpful to protect $Z_{b_L}\overline{b_L}$ Agashe, Contino, Da Rold, Pomarol '06

custodial embedding $Q_L = \begin{pmatrix} t_L^{2/3} & t_L^{5/3} \\ b_L^{-1/3} & b_L^{2/3} \end{pmatrix} \equiv (2, \bar{2})_{2/3}$ $t_R \equiv (1, 1)_{-2/3}$ $b_R \equiv (1, 1)_{1/3}$ then b_L is an eigenstate of L \Leftrightarrow R and this ensures that $\delta Z_{b_L \overline{b}_L} =$ but we expect deviations in $Zt_L\overline{t}_L$ $Wt_L\overline{b}_L$ $Zb_R\overline{b}_R$ Search in same-sign di-lepton events Contino, Servant '08 tt+jets is not a background [except for charge mis-ID and fake e⁻] the resonant (tW) invariant mass can be reconstructed 00000 discovery potential (LHC14TeV) $M_{5/3}$ =500 GeV \rightarrow 56 pb⁻¹ $M_{5/3}$ =1 TeV \rightarrow 15 fb⁻¹

Christophe Grojean

New Physics: Theoretical Developments

Hamburg, August '09

EW interactions need Goldstone bosons to provide mass to W, Z UNING WITH UNI

SM Higgs = Ising model of HEP violent departures from SM are more or less excluded to it is time to identify and explore continuous deformations !

LHC is prepared to discover the "Higgs"

collaboration EXP-TH is important to make sure e.g. that no unexpected physics (unparticle, hidden valleys) is missed (triggers, cuts...)

Should not forget that the LHC will be a (quark) top machine

and there are many reasons to believe that the top is an important agent of the Fermi scale

Christophe Grojean

New Physics: Theoretical Developments