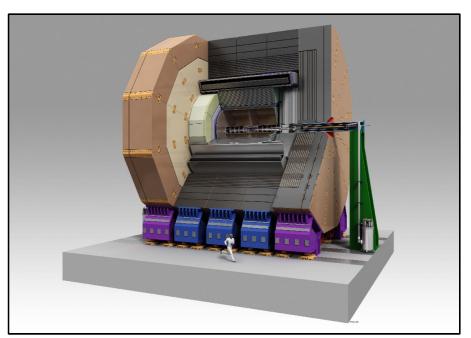
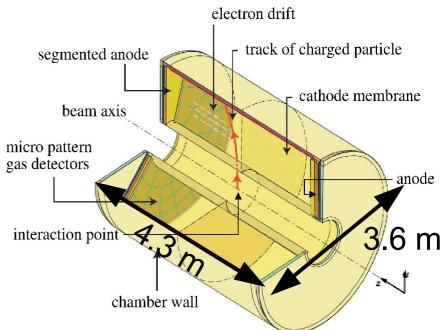

Large Prototypes and Small Pixels German R&D for a TPC at a Linear Collider

6th Annual Helmholtz Alliance Workshop Dec. 3-5, 2012

R. Diener, DESY

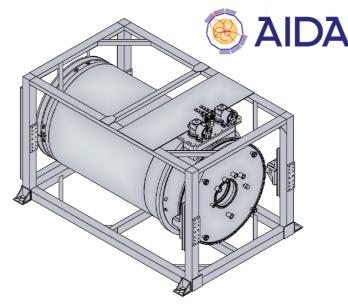



Helmholtz Alliance

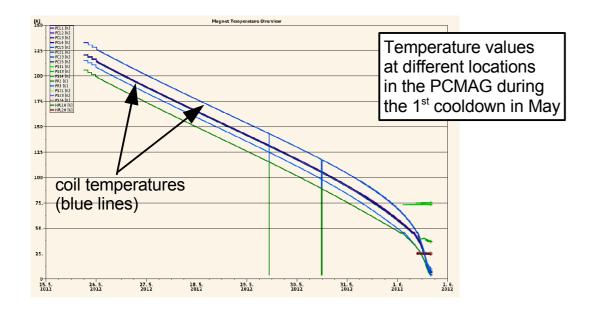
TPC@ILC A TPC at the ILD

- ILD: a multi purpose detector for the ILC
- TPC as main tracker
 - Robust tracking, ~ 200 space points per track:
 - Easy pattern recognition
 - Robust towards machine backgrounds
 - dE/dx-measurement input to particle ID
 - $\sigma \sim 100 \mu m$ (rq) and $\sim 500 \mu m$ (rz) @ 3.5 T
- Well suited for Particle Flow concept:
 - Good track separation
 - Good pattern recognition
 - Very light weight (material budget < 0.05 X₀)
- Research performed by international LCTPC collaboration

TPC@ILC T24/1 Test Beam Setup

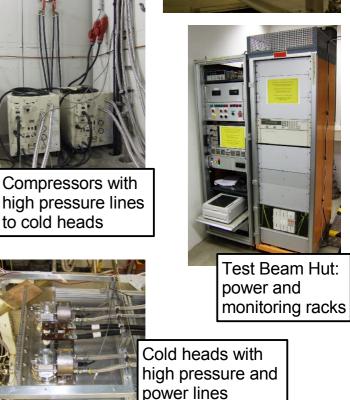

- Set up in DESY II test beam, area T24/1 (e⁺/e⁻ from 1 to 6 GeV/c): PCMAG magnet mounted on movable lifting stage (3 axis), cosmic and beam trigger, HV, gas and slow control systems, laser calibration system, etc. ...
 - Many improvements this year
- PCMAG Upgrade in AIDA (KEK & DESY)
 - Before: filling manually with liquid Helium
 - Expert work and longer running times (many fillings): increasing probability of pipe blocking due to small amounts of air in the system
 - PCMAG cooling using cryo coolers (closed circuit system)
 - No handling with cold gases,
 - Simple switch-on procedure
 - Increased safety
 - Long-period operation possible

Vent Valve



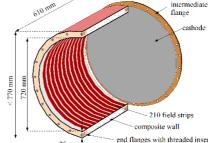
TPC@ILC PCMAG Upgrade

- July 2011 March 2012 Modification of PCMAG at Toshiba
- March/May 2012 Installation with support from Japanese experts
- May, 2012: 1st Cooldown of magnet at DESY
- June, 2012: First excitation test
- Continuously cooled from 1.6.-29.9. without problems
- Cooldown on 15.-24.Nov. without problems

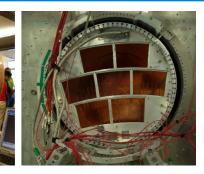


Installation of the cold heads

IL

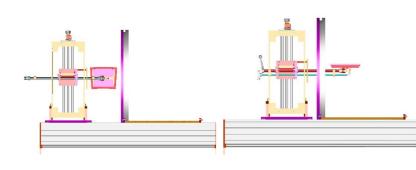


Annual "Physics at the Terascale" Alliance Workshop, 03.12.2012



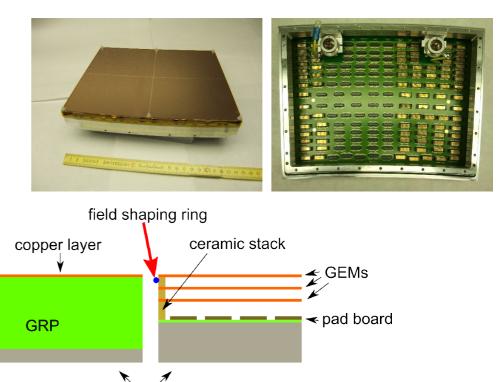
TPC@ILC Large **TPC** Prototype

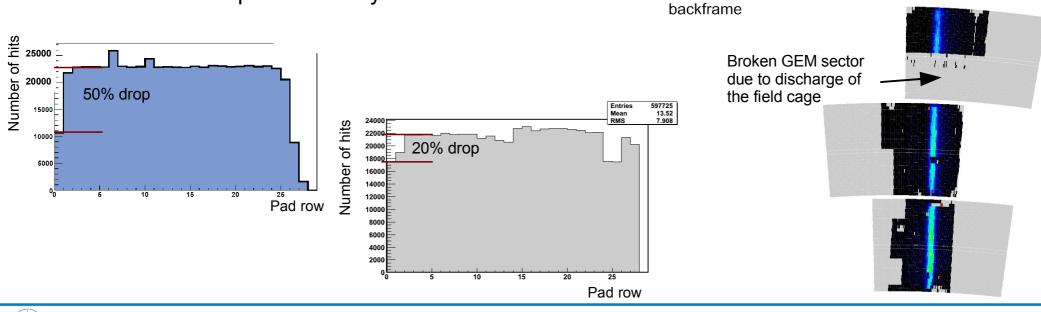
- High Voltage Improvements
 - Up to ~ 16kV before, unstable during test beam period
 - Touched and improved nearly every HV relevant corner of the field cage
 - Successfully tested at 17kV, further tests at higher voltages planned
- Second field cage: postponed to 2013 due to other tasks
- Module mounting tool nearly ready



Discharge carbon traces

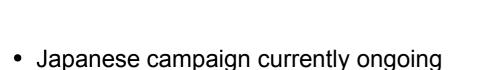
Spark at the cathode

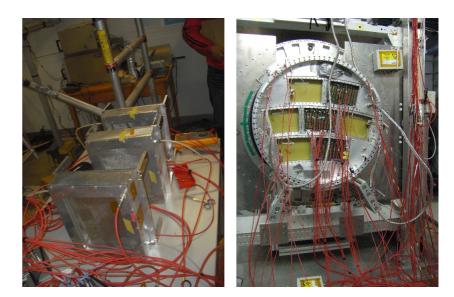


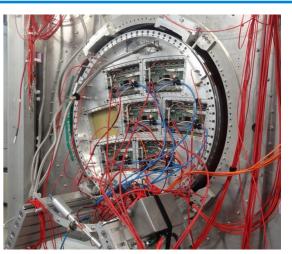


TPC@ILC GridGEM Module @ DESY

- Triple GEM amplification with ceramic grid mounting, dimensions: ~ 23x17cm²
- Pad plane (Alliance cooperation with U Bonn): now full area covered by 1.26x5.85mm² pads
- Improved HV distribution and guard ring to minimize field distortions
- Sept. 2012: new measurements with three modules in DESY test beam
 - Problem with gas tightness due to new cable holding structure
 - Next test beam planned early 2013

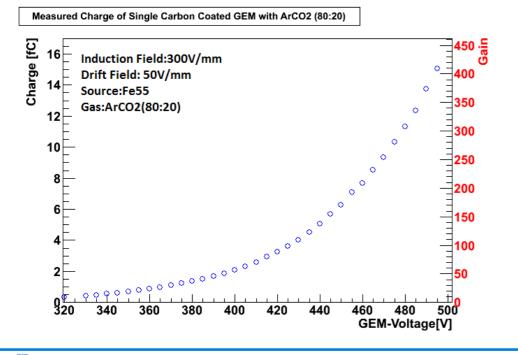


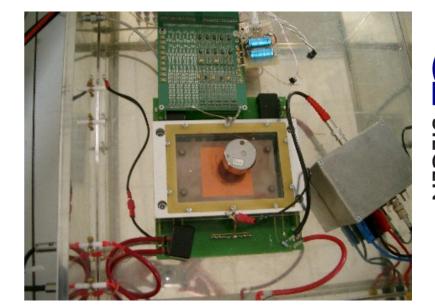

Annual "Physics at the Terascale" Alliance Workshop, 03.12.2012


TPC@ILC More Testbeam Activities

- French/Canadian testbeam campaign with 7/6 Micromegas modules with integrated electronics
 - Very fast commissioning and installation
 - Successful testbeam effort which will be continued next year

- Three double GEM modules with pad readout
- Module commissioning in test boxes finished
- HV stability tests currently running
- Possibly test of wire gating layer





TPC@ILC Carbon Coated GEM for TPC

HYSICS AT THE TERA SCALE Heimholt Alliance

- University of Siegen is testing carbon coated GEMs in a small chamber
- Using Standard GEM 50x50mm²
- GEM coated with 0.1µm thick carbon layer over the whole surface
- Prepared at Fraunhofer Gesellschaft f
 ür Schicht und Oberfl
 ächentechnik, Braunschweig
- Drift Length: 5.4mm

- Expected Advantages of Coated GEM:
 - Higher voltages possible → much higher gains can be achieved
 - Higher energy resolution
 - Less change in gain during time (stable in time)
 - Less change in resistance of GEMs over time
- Result:
 - GEM has been operated up to 500V
 - Gain measurement has been taken successfully
 - Current/gain stability measurements in progress

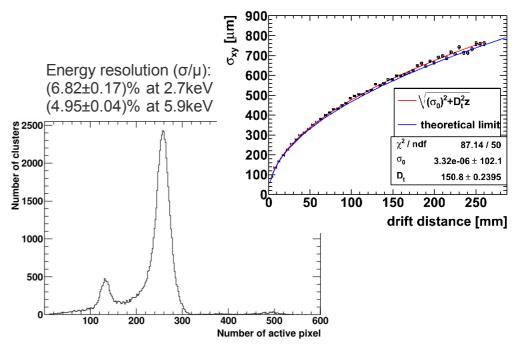
VERSITÄT

TPC@ILC InGrid studies @ Bonn

Chamber = 7.23e-004 Pa

- InGrid: Micromegas on a Timepix chip
 - Produced with wafer post-processing
 - Mesh holes aligned with pixels of the chip: single e⁻ measurement
 - 1. F

 2. C

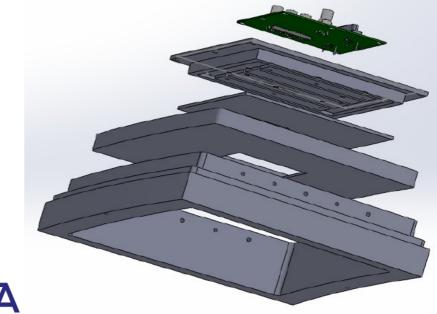

 3. F

 4. F

 5. C

 6. C
 - 1. Formation of Si_xN_y protection layer 2. Deposition of SU-8
 - 3. Pillar structure formation
 - 4. Formation of Al grid
 - 5. Dicing of Wafer
 - 6. Development of SU-8
- InGrid post-processing:
 - U Twente: max 9 chips → Fraunhofer IZM: 1 wafer (107 chips)
 - First wafer processed at IZM not optimal: problems with resistive layer and Al-grid
 - Second wafer: resistive layer needs optimization (chips die after > 2 weeks)
 - Third batch (09/2012): very good behavior, 5 chips tested for > 4 weeks

Signal A = SE2 EHT = 20.00 kV


WD = 18 mm

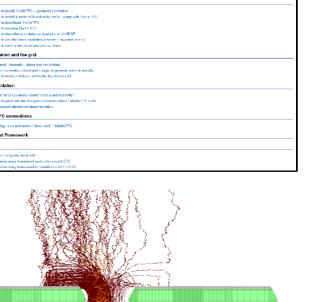
TPC@ILC Status Timepix + SRS Readout

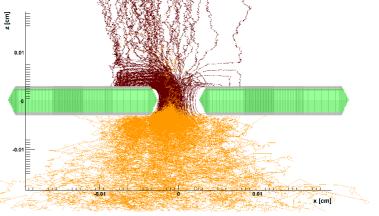
- SRS: Scalable Readout System (RD51) •
 - Adapted to Timepix chip, readout of one chip in operation
 - Octoboard in preparation: ۲ Test in Large TPC Prototype at DESY in March/April 2013 with GEM gas amplification
 - Long scale: 96 chip module • (50% active surface, 6 mio. channels)
- DAQ software / SRS FPGA firmware •
 - Ready to handle octoboard •
 - Calibration algorithm test ongoing, • current results promising

TPC@ILC Software

- MarlinTPC (LCTPC software package):
 - Enables R&D groups to do detailed studies, based on common ILC software
 - Used for small and large prototype, pad & pixel reconstruction and analysis

R

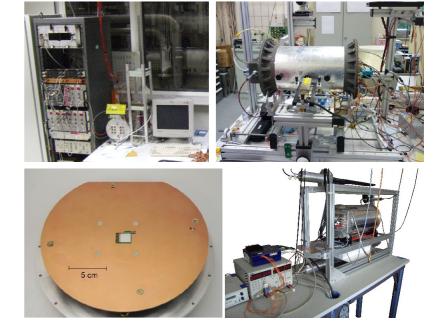

MarlinTPC


MarlinTPC

Beaps usible persons of (and for) Varin TP

ail or is a 🖂 it allena

- A new track fitting package based on a General Broken Lines fit has been developed and integrated in MarlinTPC
- A fast analysis package for use at the test beam has been developed
- Documentation is being extended (wiki, notes, running examples)
- Detailed GEM Simulation
 - Garfield++ (RD51) with interfaces from 2 FEM field calculations (Ansys, CST)
 - Mini-framework for automation implemented
 - Detailed studies of different GEM layouts and settings have started


Ttol Text

~ [2] 65 10 10 12 4

TPC@ILC Conclusion

- Active work with smaller prototypes
 - DESY ion back flow measurement setup extended with a test chamber and fast nano-Ampere measuring devices from University of Bonn
 - Siegen test chambers reliable working in measurements with radioactive sources, cosmic muons and laser induced tracks
 - Studies with former Aachen prototype using triple GEM amplification and Timepix readout ongoing at University of Bonn
- Strong effort to study ion back flow minimization and its impact using small prototypes and simulations
- Continuous improvement of TPC test beam setup
- Testbeam campaigns planned in 2013 by DESY with GridGEM module and by Bonn with Timepix module
- Active development of software components (reconstruction and analysis), documentation and common infrastructure: data storage, conditions database servers

