Milada Margarete Mühlleitner (ITP Karlsruhe)

Physics at LHC 2010 DESY, Hamburg June, 7-12, 2010

The Higgs particle as UV regulator

Scattering of longitudinally polarized W bosons

Scattering of longitudinally polarized W bosons

Higgs boson guarantees unitarity of the W scattering $~~(ext{if its mass is }\lesssim 1$ TeV.)

Higgs mechanism - model without dynamics: description but no explanation of the EWSB

Shortcomings of the SM:

fails at the Planck scale; hierarchy problem; mass and mixing patterns?; no DM candidate; baryon asymmetry; gauge coupling unification ...

nd and hierarchy problem. made and miving na

M.M. Mühlleitner, June 8, 2010, Physics at LHC 2010

Hierarchy problem

• Quantum corrections to the Higgs boson mass:

Renormalization:

$$m_H^2 = m_{H0}^2 - \delta m_H^2$$

 $10^4 \text{ GeV}^2) = \mathcal{O}(10^{30} \text{ GeV}^2) - \delta m_H^2$ ($\Lambda = \Lambda_{GUT} = 10^{16} \text{ GeV}$)

 \Rightarrow extreme finetuning necessary

 $\widetilde{\mathcal{O}}$

Hierarchy problem

• Quantum corrections to the Higgs boson mass:

 \Rightarrow extreme finetuning necessary

SM Higgs phenomenology mini-summary

 ${}^{180}_{M_{
m H}}[{
m GeV}]^{190}$

• Revisit longitudinal W scattering: SM Higgs is peculiar!

Couplings:
$$HWW$$
: $a\frac{2M_W^2}{v}$ $HHWW$: $b\frac{2M_W^2}{v^2}$

$$\Rightarrow W_L W_L \to W_L W_L: \quad \mathcal{A} = \frac{1}{v^2} \left(s - \frac{a^2 s^2}{s - m_H^2} \right) \qquad \text{SM: } a = b = 1 \quad (\leftarrow \text{ unitarize } W_L W_L \to HH)$$

Composite Higgs boson - Introduction

• Revisit longitudinal W scattering: SM Higgs is peculiar!

$$\underline{\mathsf{Couplings:}} \quad HWW : \quad \boldsymbol{a} \frac{2M_W^2}{v} \quad HHWW : \quad \boldsymbol{b} \frac{2M_W^2}{v^2}$$

$$\Rightarrow W_L W_L \to W_L W_L: \quad \mathcal{A} = \frac{1}{v^2} \left(s - \frac{a^2 s^2}{s - m_H^2} \right) \qquad \text{SM: } a = b = 1 \quad (\leftarrow \text{ unitarize } W_L W_L \to HH)$$

Continuous interpolation between the SM and Technicolor:

	$\xi = 0$ SM limit
	Ť
	$\xi = \frac{v^2}{f^2} = \frac{(\text{weak scale})^2}{(\text{strong coupling scale})^2}$
_	Ļ
•	
-	
-	chnicolor
	limit

strong sector resonances decouple, except Higgs

Higgs deccouples, vector resonances like in TC

Revisit longitudinal W scattering: SM Higgs is peculiar!

Couplings:
$$HWW$$
: $a\frac{2M_W^2}{v}$ $HHWW$: $b\frac{2M_W^2}{v^2}$

$$\Rightarrow W_L W_L \to W_L W_L: \quad \mathcal{A} = \frac{1}{v^2} \left(s - \frac{a^2 s^2}{s - m_H^2} \right) \qquad \text{SM: } a = b = 1 \quad (\leftarrow \text{ unitarize } W_L W_L \to HH)$$

Continuous interpolation between the SM and Technicolor:

strong sector resonances decouple, except Higgs	$\xi = 0$ SM limit \leftarrow
	$\xi = \frac{v^2}{f^2} = \frac{(\text{weak scale})^2}{(\text{strong coupling scale})^2}$
Higgs deccouples, vector resonances like in TC	$\longrightarrow \xi = 1$ Technicolor limit

Composite Higgs models: Higgs = composite object: couplings deviate from a = b = 1

M.M. Mühlleitner, June 8, 2010, Physics at LHC 2010
- $SO(5)/SO(4) \leftrightarrow$ PGB: one doublet - $SO(6)/SO(5) \leftrightarrow$ PGB: one doublet + singlet
• Possible symmetry patterns * H must contain SM gauge group * G must contain an $SU(2) \times SU(2) \sim SO(4)$ symmetry \rightsquigarrow PGB is a Higgs doublet
G/H: 4th Nambu-Goldstone Boson: Higgs boson
$\begin{array}{ccc} {\rm spontaneously} \\ {\rm broken} \ {\rm at}f \\ {\rm Global} \ {\rm symmetry} \ {\rm of} \ {\rm strong} \ {\rm sector} \ G & \longrightarrow \\ \end{array} \qquad {\rm subgroup} \ H \end{array}$
Higgs: Pseudo-Goldstone boson of strongly interacting sector
• How can we obtain a light composite Higgs?
Composite Higgs boson - Introduction

Composite Higgs boson - Physics

• SILH effective Lagrangian

Giudice, Grojean, Pomarol, Rattazzi

(SILH=strongly interacting light Higgs)

• Genuine strong operators (sensitive to the scale f)

 $\frac{c_{H}}{2f^{2}} (\partial_{\mu} (|H|^{2}))^{2} + \frac{c_{T}}{2f^{2}} (H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}})^{2} + \left(\frac{c_{y} y_{f}}{f^{2}} |H|^{2} \bar{f}_{L} H f_{R} + h.c.\right) + \frac{c_{6} \lambda}{f^{2}} |H|^{6}$

Form factor operators (sensitive to the scale m_{ρ}) $\frac{ic_{wg}}{2m_{\rho}^{2}}(H^{\dagger}\sigma^{i} \stackrel{D}{D^{\mu}} H)(D^{\nu}W_{\mu\nu})^{i} + \frac{ic_{B}g'}{2m_{\rho}^{2}}(H^{\dagger} \stackrel{D}{D^{\mu}} H)(\partial^{\nu}B_{\mu\nu}) + \dots$

 $c_H, c_T, \ldots \mathcal{O}(1)$, MFV built in (no FCNC)

Contribution to Higgs kinetic term: $\frac{c_H}{2f^2}(\partial_{\mu}(|H|^2))^2$

Rescale Higgs field $\rightsquigarrow \quad g_{Hf\bar{f}} = g_{Hf\bar{f}}^{SM} \left(1 - (c_y + c_H/2)\frac{v^2}{f^2}\right)$ $g_{HWW} = g_{HWW}^{SM} \left(1 - c_H \frac{v^2}{f^2} \right)$

Resonances

Production of heavy resonances $m_
ho$

Coupling modifications:

 \diamond modification of production and decay rates*

CLIC/3 TeV \rightarrow improve sensitivity by factor 2 ILC/500 GeV \rightsquigarrow probe $4\pi f \sim 30$ TeV, $\delta \lambda_{HHH} \sim 10 - 20\%$ Barger ea LHC/300 fb⁻¹: $\delta g \approx 20 - 40\%$ Dührssen eal. \rightsquigarrow probe $4\pi f = 5 - 7$ TeV

- \diamond strong WW scattering: $W_L W_L \rightarrow W_L W_L$ difficult: disentangle L from T polarization Giudice eal
- \diamond strong HH production: $W_L W_L \rightarrow HH$ SLHC/5 ab⁻¹: 3l final state: rather clean signal $\xi > 0.5$ Contino eal
- * no direct probe of strong sector at origin of EWSB
- This talk: Impact on Higgs boson searches at the LHC Espinosa, Grojean, Mühlleitner

Impact on LHC searches

• Outline

- ▷ Branching ratios and total widths
- ▷ Constraints from LEP, Tevatron searches and EWPT
- ▷ Production cross sections
- ▷ Higgs boson search: significances

Reminder

→ BRs unchanged	universal factor	$g_{Hff} = g_{Hff}^{SM} \sqrt{1-\xi}$	$g_{HVV} = g^{SM}_{HVV} \sqrt{1-\xi}$	MCHM4
vanishes for $\xi=0.5$	g_{Hff} coupling	$g_{Hff}=g_{Hff}^{SM}rac{\left(1-2\xi ight)}{\sqrt{1-\xi}}$	$g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi}$	MCHM5

In the following: $\xi = 0.2, 0.5, 0.8$

10<u>-</u>1

יי די די די

10<u>-</u>1

יי זי זי ז'

- BR(H) MCHM5 ξ=0.2

<mark>6</mark>

66

°.

99

8

BR(H) SM

Ŵ

Espinosa, Grojean, Mühlleitner

¥

• EWPT constraints

$$\hat{T} = c_T \frac{v^2}{f^2} \Rightarrow |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$$

$$\hat{S} = (c_W + c_B) \frac{m_W^2}{m_\rho^2} \Rightarrow$$

removed by custodial symmetry

$$m_{
ho} \ge (c_B + c_W)^{1/2} \ 2.5 \ {
m TeV}$$

EWPT constraints

$$\hat{T} = c_T \frac{v^2}{f^2} \Rightarrow |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$$
 removed by custodial symmetry

$$\hat{S} = (c_W + c_B) \frac{m_W^2}{m_\rho^2} \Rightarrow \qquad m_\rho \ge (c_B + c_W)^{1/2} 2.5 \text{ TeV}$$

♦ 1-loop IR effects Barbieri eal

$$\hat{S}, \hat{T} = a \ln m_H + b$$
 modified Higgs coupling to matter \Rightarrow
 $\hat{S}, \hat{T} = a((1-c_H\xi) \ln m_H + c_H\xi \ln \Lambda) + b$

LEPII,
$$m_H \approx 115$$
 GeV.

$$m_H^{eff} = m_H \left(\frac{\Lambda}{m_H}\right)^{c_H v^2/f^2} > m_H$$
$$c_H \frac{v^2}{f^2} < \frac{1}{3} \sim \frac{1}{2}$$

IR effects can be cancelled by heavy fermions (model-dependent)

• EWPT constraints

$$\hat{T} = c_T \frac{v^2}{f^2} \Rightarrow |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$$
 removed by custodial symmetry

$$\hat{S} = (c_W + c_B) \frac{m_W^2}{m_\rho^2} \Rightarrow \qquad m_\rho \ge (c_B + c_W)^{1/2} \ 2.5 \text{ TeV}$$

♦ 1-loop IR effects Barbieri eal

$$\hat{S}, \hat{T} = a \ln m_H + b$$
 modified Higgs coupling to matter \Rightarrow
 $\hat{S}, \hat{T} = a((1-c_H\xi) \ln m_H + c_H\xi \ln \Lambda) + b$

LEPII,
$$m_H \approx 115 \text{ GeV}$$

$$m_H^{eff} = m_H \left(\frac{\Lambda}{m_H}\right)^{c_H v^2/f^2} > m_H$$
$$c_H \frac{v^2}{f^2} < \frac{1}{3} \sim \frac{1}{2}$$

IR effects can be cancelled by heavy fermions (model-dependent)

- Searches at LEP $e^+e^- \rightarrow ZH \rightarrow Zb\bar{b}$
- Tevatron search most relevant $H \rightarrow WW$

LEP/Tevatron exclusion limits generated with Higgsbounds Bechtle eal

Espinosa, Grojean, Mühlleitner

M.M. Mühlleitner, June 8, 2010, Physics at LHC 2010

Production cross sections MCHM5

Espinosa, Grojean, Mühlleitner

SM Higgs discovery potential

$\begin{array}{ll} \mbox{Inclusive production with subsequent decay}: & H \to \gamma\gamma \\ & H \to ZZ \to 2e2\mu, 4e, 4\mu \\ & H \to WW \to 2l2\nu \end{array}$

I

10

G

_

180

200 M_H [GeV]

50

CMS 30fb⁻¹

MCHM4

ς**=0.8**

S

Espinosa, Grojean, Mühlleitner

Espinosa, Grojean, Mühlleitner

Conclusions

sector

 Composite Higgs Model 	Higgs as pseudo-Goldstone boson of the strong
 Higgs matter couplings 	modified (Higgs is a bound state)
• Discovery prospects at LHC	may be significantly changed
After Higgs disovery:	Which Higgs have we discovered?

	Conclusions
 Composite Higgs Model 	Higgs as pseudo-Goldstone boson of the strong sector
 Higgs matter couplings 	modified (Higgs is a bound state)
 Discovery prospects at LHC 	may be significantly changed
 After Higgs disovery: 	Which Higgs have we discovered?
UnHiggs	Private Higgs
${\cal G}$ augephobic ${\cal H}$ iggs	Intermediate Higgs Olim Higgs
Composite Higgs	\mathcal{F} at \mathcal{H}_{iggs} $\mathcal{H}_{iggs/esc}$
Higgs	Portal Higgs
Gauge	Twin Higgs Lone Higgs
${\cal S}$ implest ${\cal H}$	liggs Phantom Higgs
M.M. Mühlleitner, June 8, 2010, Physics at LH	C 2010

Processes involved and significance definitions

 $H
ightarrow \gamma \gamma$

Processes: gluon fusion, VBF, VH, $Ht\bar{t}$

Significance: cut-based analysis, $S^{\xi} = \kappa \sum_i \frac{s_i}{\sqrt{b_i}}$

 $H \rightarrow ZZ \rightarrow 4l$

Processes: gluon fusion, VBF

 S_P is the solution of the equation Significance: Poisson significance S_P , neglecting the (small) systematic uncertainty.

$$\sum_{i=0}^{s+b-1} \frac{e^{-b}b^i}{i!} = \int_{-\infty}^{S_P} dx \frac{e^{-x^2/2}}{\sqrt{2\pi}}$$

i=0

H
ightarrow WW
ightarrow 2l2
u

Processes: gluon fusion, VBF

Significance: ScP2 w/ systematic uncertainty 10% at 30 fb $^{-1}$

$$ScP2[s, b, \Delta b] \equiv 2\left(\sqrt{s+b} - \sqrt{b}\right)\sqrt{\frac{b}{b+\Delta b^2}}$$

Processes involved and significance definitions

• $H \to WW \to l\nu jj$

Processes: VBF

Significance: $ScL' \le 16\%$ bkg uncertainty

$$\begin{aligned} ScL[s,b] &\equiv \sqrt{2[(s+b)\log(1+s/b)-s]} ,\\ ScL'[s,b,\Delta b] &\equiv ScL[s,b+\Delta b^2] \end{aligned}$$

• $H \to \tau \tau \to l + j + E_T^{miss}$

Processes: VBF

Significance: Poisson significance w/ systematic uncertainty 7.8%.

