ﬁ HELMHOLTZ
|GEMEINSCHAFT

ROOT TUTORIAL

Claudia Seitz

ROOT

ROOQOT is an analysis software that is used extensively in
particle physics
The three main aspects are:
Graphic/Plotting
Various 1-dim up to n-dim histogram formats
Graphs and functions

Data analysis

Math libraries

Statistical libraries such as RooFit /RooStat

TMVA (neural network, boosted decision trees, etc.)
Data storage

Data structures for event-based data analysis

C++ and python (PyRoot) can both be used

Some technical details

Connect to either eduroam or the school network:

Name: terascale
WPA /WPA2-PSK: XxPWiNH7
Code examples throughout the talk with colors

Execute this Some example code

All will get school accounts for naf
Example: ssh -X -Y

Setup the needed software

module avail
module load root/5.34

Installation on your laptop (maybe for later)

Installation

A recent version of ROOT 5 can be obtained from
as
binaries for Linux, Windows and Mac OS X and as source code.

Linux - Ubuntu

Ready-to-use packages of ROOT are available for Ubuntu.
They can be installed with:

sudo apt-get install root-system

Windows

For Windows the following software needs to be downloaded
and installed: ROOT 5.34:

Python:

Getting started: C++

ROOT is prompt based and speaks C++

$ root -1

root [0] gROOT->GetVersion()

(const char* 0x1094c4221)"5.34/18 »
root [1] sqrt(9) + 4

(const double)7.0000000000000000e+00

Quit the root session

root [5] .q Create Example.C
float Example(float x) {
External macros float x2 = x*x;

return x2;

}

root [2] .x Example.C(2)
or

root [3] .L Example.C
root [4] Example(2)

From command line (quotation marks needed if function takes argument):

S root -1 "Example.C(2)"

Getting started: PyROOT

Start the python environment and load ROOT

$ python | Create Example.py (function)
>>> from ROOT import *

>>> gROOT.GetVersion() def Example(x):

'5.34/18" X2 = X*X

>>> sqrt(9) + 4 return x2

7.0

>>> from Example import *

>>> Example(2) Create Example2.py (plain macro)
4

>>> from ROOT import *

print "Hello World"
for i in range(0,5):
print i

Quit the session ,
S python -i Example2.py

>>> quit() (or Ctrl + d) or
>>> from Example import *

-i keeps the python prompt open

Comparison: Python vs. C++

11 Both languages have their pros and cons

interpreted compiled

slower execution of python code fast
dynamic typing /checks at runtime strict type checking at compile time
automatic memory management manual memory management

blocks separated by indentation code blocks separated by {}

0 | often mix and match depending on the task

Python wrappers for defining inputs, reading parameters,
plotting, calling C++ code, etc...

C++ code for calculations, fitting, etc...

Python

#defining a variable

a =1

b =1.5

#printing things to the screen
print a, "is not equal", b

#importing functions/classes
from ROOT import THI1F

#Indentation defines commands
#loops/statement

#For loop
for i in range(0,10):
print i
#if/else statements
if b == c:
print "they are equal"
elif b > c:
print "b is bigger”
else:
print "c is bigger”

C++

//defining a variable

int a = 1;

float b = 1.5;

//printing output

cout<<a<<” 1is not equal "<<b<<endl;

//importing packages
#include "TH1F.h"

//{} define the commands inside
//loops/statement

//For loop
for (int i =0; i < 10; i++){
cout << i << endl;}

//if/else statements
if (b == c){

cout<<"they are equal'"<<endl;}
else if (b > c){

cout<<"b is bigger'"<<endl;}
else{

cout<<'"c is bigger'"<<endl;}

Basic classes in ROOT

TObject: base class for all ROOT obijects
TH1: base class for 1-, 2-, 3-D Histograms

TStyle: class for style of histograms, axis, title, markers, etc...

TCanvas: class for graphical display

TGraph: class of graphic object based on x and y arrays
TF1: base class for functions

TFile: class for reading /writing root files

TTree: basic storage format in ROOT

TMath: class for math routines

TRandoma3: random generator class

Complete list:

Histograms

A histogram is just occurrence counting, i.e. how
often a certain outcome appears

-3

-3.3 Histogram of x
2 Bin Count

2.5 [-3.5, -2.5] 9

- [-2.5, -1.5] 32 3

;-j [-1.5, -0.5] 109 >

' [-0.5, 0.5] 180 s S

2.9 0.5, 1.5] 132 S

gz [1.5, 2.5] 34 =g

24 [2.5, 3.5] 4

-2.9 =

2 3 1 123
2.5

Histograms in ROOT

Histograms can be:

Standard classes: 1D (TH1), 2D (TH2), 3D(TH3)
Special class: n-D (THn or THnSparse)
Content: integers (TH11I), floats (TH1F), double (TH1D)

>>> from ROOT import *

>>> hist = TH1F("hist", "title; x value; y value", 20, 0, 5)

>>> hist.Fill(2)

>>> hist.Fill(2.5,0.5)

title

hi

st

Entries
Mean
RMS

2 4= —

2 L
=

2
2.167
0.2357

08—
0.6—
04—

02—

P IR IS IR AT I PPN IPS) A PSP AP IR T

0 0.5 1 1.5 2 25 3 35 4 4.5
X

Increase bin at x value by
1 (default) (or 0.5 “weight”)

>>> hist.SetBinContent(2,2)

title

E o Entries 1
g E Mean 0.375
1.8 RMS 0
1.6;
1.4;
1.2;
i
o.s;
o.s;
04l
02l
% 05 1‘ 1‘5 ‘2 ‘ ‘2.‘5‘ - 3‘ 3‘5 A‘t 4‘5 5

Set content of bin 2, which corresponds
to values 0.25 < x < 0.5,t0 2

Histograms in ROOT

Fill histogram according to Gaussian distribution
with 1000 entries and extract mean and RMS

>>> from ROOT import *

>>> hist = TH1F("hist", "Gaussian; x value; number of entries", 100, -3, 3)
>>> hist.FillRandom("gaus", 10000)

>>> hist.Draw()

>>> hist.GetBinContent (58) Gaussian

34 . O EntrieshiSt 1000
. Mean 0.009204
>>> hist.GetMean()

W
a

number of entries
w
o

RMS 0.9861
0.009204489559116142
>>> hist.GetRMS()
0.986066762844140

N
(S

N
(=]

-
[$))

-
o

>>> #Change binning of histogram
>>> hist.Rebin(2)

>>> #Multiply each bin by factor L ““““ﬁﬂgﬂ(
>>> hist.Scale(2) ' ' ' © vaue

a
w#\\\‘HH‘\H\‘HH‘\\H‘\\H‘\H\l

(=]

One can always combine bins (rebin) but not the other way around

Histograms styles

>>> hist.Draw("OPTION")

Option Explanation

'E" Draw error bars.
"HIST" When an histogram has errors it is visualized by default with error bars.
To visualize it without errors use the option "HIST".
"SAME" Superimpose on previous picture in the same pad.

"TEXT" Draw bin contents as text.
Options just for TH1

'c" Draw a smooth Curve through the histogram bins.

"EO" Draw error bars. Markers are drawn for bins with O contents.

"E1" Draw error bars with perpendicular lines at the edges.

"E2" Draw error bars with rectangles.

"E3" Draw a fill area through the end points of the vertical error bars.

"E4" Draw a smoothed filled area through the end points of the error bars.
Options just for TH2

"COL" A box is drawn for each cell with a color scale varying with contents.

"COLZ" Same as "COL". In addition the color palette is also drawn.
"CONT" Draw a contour plot (same as CONTO).
"SURF" Draw a surface plot with hidden line removal.

Exercise: Histograms

Write a python macro ExerciseHist.py

Create a histogram with 10 bins ranging

from 0. to 100. with title /x-axis label "x

Fill the histogram at the following numbers:

11.3, 25.4, 18.1

Fill the histogram with the square of all
integers from 0. to 9.

(Hint: A simple loop will save you from
typing several lines of code)

Draw the histogram.

Calculate the mean value and the rms and
show it on the screen.

print mean, rms
Calculate the integral of the histogram.

Identify the bin with the maximum number
of entries.

Calculate the maximum bin content.
Set the y-axis label to "entries".
Set the line color of the histogram to red.

Run with
python -i ExerciseHist.py

One dimensional histogram

Constructor of a histogram:

Fill a histogram:
Draw a histogram:

Mean of a histogram:
RMS of a histogram:

Mode of a histogram:

Get the bin content of a histogram:
Integral of a histogram:
Y-axis used to draw the histogram:

Access axis and set label

Change line color of the histogram:

The color index for red is named kRed.

Exercise: Histograms
B

w histogram1
2 4E Entries 13
= ~ Mean 26.14
~ RMS 24 .1
3.5—
3—
25—
21—
1.5
1=
05—
0 :I 111 | 1111 | 1111 | 111 1 | 111 1 11 111 1 111 1 111 1 111 1
0 10 20 30 40 50 60 70 80 90 100

Canvas and Legends in ROOT

ROOT distinguishes between a histogram and a
“canvas” where is histogram is drawn on

Multiple histograms (and other objects) can be
drawn on the same canvas with Draw(“same”

Legends can be added to the canvas

>>> from ROOT import *
>>> ¢ = TCanvas('"canvas", "canvas", 800 , 600)

>>> legend = TLegend(0.16, 0.63, 0.45, 0.91)
>>> legend.AddEntry(histl, "Gaussian", "1")
>>> legend.AddEntry(hist2, "Polynomial", "1")
>>> legend.Draw()

Exercise: Canvas and Legends

Write a python macro ExerciseCanvas.py:

Create two histograms with 50 bins ranging from -3. to 3. with two different names
Fill first histogram with Gaussian distribution with 1000 entries

Fill second histogram with a second order polynomial and 500 entries
hist2.FillRandom("pol2", 500)

Create a TCanvas c1 and draw both histograms (option "same ")

Set the line color of the first histogram to kRed and the second to kBlue

Clone both histograms
histlb = histl.Clone()

Scale both cloned histograms by the inverse of their respective integral, i.e. normalise them to
unit area.

Create a TCanvas c2 and draw both cloned histograms

Create a legend at position (0.16, 0.63, 0.45, 0.91) and add entries for both histograms to it.
Draw the legend.

Save both canvases as pdf files and as root file
c.Print("filename.pdf")
c.SaveAs("filename.root")

Exercise: Canvas and Legends

Entries |+ 1000

0.07
g C — Gaussian <|> <|> Mear] [0/009227
> : RMST 0.987
0.06]-
- |~ Polynomial
0.05

Graphical User Interface (GUI)

1 GUI can be used for visualization and adjustment of
styles or plotting on the fly

>>> from ROOT import *
>>> b = TBrowser()
>>> f = TFile("filename.root")

X! ROOT Object Browser
Browser |Ei|e Edit ¥iew Options Tools Help
Files | Canvas_1 @l Editor 1.8 0. O [\ Canvas_1_n2
0 O O [x| Canva... 4,V & oawopion| =] File Edit View Options Tools Help
Style | ginning | .
Thoot - Gaussian
Mame P .
hist-TH1F QPHDDFSBSSIDHS h t
ZAROOT Files @, IS
Ling ——— EvﬁSExampleEanvasJalon.mnt 20.07__ Entries |+ 1000
-\ | ——) £ E |~ Gaussian Mear| 0}009227
— S - > T RMST 0.987
B2y Users 5 0.06 —
Fill # =423 ClaudiaSeitz) —
l:l - - - ([#pplications C __ H i
-~ ¥ Sossas . Polynomial
_ - (3 Douments 0.05— |
Gaussian (2 Downinads : m
Histogram (2 Drophox P “»
[Library
Flot . 0.04 4 L
[Movies
* 20 3D Ctusic ‘ | +
[JPictures J)
Eror. [No Errors - Erusic Command | 0.03) T _
style: [NoLine ~ S@roor Conmand (ocal; [k‘]
= Simple Drawing s M C
[~ Show markers Filter: [&l Files (-9 | | 0.02|- -+
[" Draw bar chart i | T
" Bar option E £ -
Marker - nni i + +
M- [. . . . Jr
Right click on the lines of hist1 | R e Rt

-1 0 1 2 3
=>» SetlineColor opens color pomel x value

Graphical User Interface (GUI)

Sometimes changing things by hand are much easier

Position of legends (coordinates are given as
percentage with respect to the boundaries of the plot)

Font sizes of axis labels, offset of lables — =ooe

— Gaussian

Make the change manually

Save the canvas as a .C file

Find the code, import the settings back -

ottt |

Gaussi a
TLegend xleg = new TLegend(0.4560302,0.7062937,0.7462312,0.8426573,NULL,"brNDC") ; ,,,E oussian | oy
leg->SetBorderSize(1); e — Polynomial
leg->SetLineColor(0); e
leg—>SetLineStyle(1); o6f- +
leg—>SetLineWidth(1); - oost } | }
leg->SetFillColor(0); New legend position O«JM UN ﬂ H+ +
leg->SetFillStyle(1001); . . | + H
g y and settings: white bkg M@i . Hﬂﬂﬂ* +
° 0.01;7 il +A
and line color e 11 M ITT Y L

Graphs in ROOT

Three main classes for graphs TGraph,
TGraphErrors, TGraphAsymmetricErrors

Graphs are used to display value pairs, errors can be
defined to be either symmetric or antisymmetric

>>> from ROOT import * Graph
>>> #create graph with 3 points 3o
>>> graph = TGraph(3) 34
>>> #set three points of the graph =
>>> graph.SetPoint(0, 3.0, 2.1) £
>>> graph.SetPoint(1, 5.0, 2.9) -
>>> graph.SetPoint(2, 7.2, 3.5) =
>>> #set styles 20F
>>> graph.SetMarkerStyle(21) 24—
>>> graph.SetMarkerSize(1l) 22f-

>>> #Draw axis (A), points (P), and line (L)

>>> graph.Draw("APL") S S

Functions in ROOT

Classes for TF1, TF2, TF3 for 1 to 3 dimensional functions

>>> from ROOT import *
>>> #Use of predefined functions *“gaus”, “poll”,”pol3”, etc.

>>> fGaus = TF1l("fGaus", "gaus", -2, 2)

>>> #Use of custom user functions
>>> £ = TF1("£","[0]*exp(-0.5*((x-[11)/[2])"2)", -2, 2)

>>> #Setting the parameters [0 exp(-0.5°(([11/12])"2)

>>> f.SetParameter(0,20) 25— — [0]*exp(-0.5*((x-[1]}/[2])"2)
>>> f.SetParameter(1l,0) gaus
>>> f.SetParameter(2,1) 20

>>> fGaus.SetParameter(0,10) 5
>>> fGaus.SetParameter(1,0)
>>> fGaus.SetParameter(2,1) 10

Fitting in ROOT

>>> hist.Fit("fGaus")
FCN=97.4876 FROM MIGRAD STATUS=CONVERGED 67 CALLS 68 TOTAL
EDM=3.44445e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 2.29946e+01 1.02159e+00 3.70880e-03 2.59473e-04
2 Mean -2.11506e-03 3.28869e-02 1.58874e-04 5.12360e-03
3 Sigma 9.50152e-01 3.00472e-02 3.74233e-05 1.80927e-02
<ROOT.TFitResultPtr object at 0x7fa0db5b9e70>

. Gaussian
>>> hist.Draw() hist

>>> fGaus.Draw("same") % Enffes 1000

RMS 0.9861

30

number of entries

25

x value

Exercise: Graphs

Write a python macro ExerciseGraph.py:

Create a graph with symmetric errors and 5
points.

Set the following points (0-4): (1.0, 2.1),
(2.0, 2.9), (3.0, 4.05), (4.0, 5.2), (5.0, 5.95)

Set the errors on x to 0.0 and the errors on
y to O.1.

Draw the graph including the axes and error
bars.

Create a one dimensional function
f(x)=mx + b and fit it to the graph.

Obtain the two parameters a and b from

the function and their estimated
uncertainties.

and Fits

A one dimensional graph

A constructor of a graph:

A method to set the points of a graph:

A method to set the errors of a graph:

A method to fit a graph with a function:

A method to return the parameters of a function:

A method to return the errors on the parameters of a
function:

Exercise: Graphs and Fits

Classes: TFile and TTree

TFile is basic | /O format in root

Open an existing file (read only)

InFile = TFile(“myfile.root”, “OPTION")

OPTION = leave blank (read only), “RECREATE” (replace file),
“UPDATE” (append to file)

Files can contain directories, histograms and trees (ntuples) etc.

ROOT stores data in TTree format

Tree has “entries” (e.g. collision events)
each with identical data structure

Can contain floats, integers, or more complex objects
(whole classes, vectors, etc...)

TNtuple is a tree that contains only floats

Creating a TTree from text file

Copy the following text file

cp /afs/desy.de/user/c/clseitz/public/Schools/TeraScale/basic.dat .

>>> from ROOT import *

>>> f = TFile("ntuple.root", "RECREATE")

>>> t = TTree("ntuple","reading data from ascii file")
>>> t.ReadFile("basic.dat","x:y:2z")

>>> t.Write()

clseitz@naf-hh: $ more basic.dat
-1.102279 -1.799389 4.452822
1.867178 -0.596622 3.842313
-0.524181 1.868521 3.766139
-0.380611 0.969128 1.084074
0.552454 -0.212309 0.350281
-0.184954 1.187305 1.443902
0.205643 -0.770148 0.635417

Working with TTrees

11 Get the following root file (or use from previous page)

cp /afs/desy.de/user/c/clseitz/public/Schools/TeraScale/basic.root .

>>> from ROOT import *
>>> f = TFile("basic.root")
>>> t = f.Get("ntuple")

>>> t.Show(2)

= DU Shows the content and structure
X = -0.524181 £ th f
y = 1.86852 ot the tree tor one entry
Z = 3.76614

>>> t.Scan()
R b b S b b b S R b b b b b b b b S b b S b S .
Shows one or multiple

* ROW * X * y * A * . .
dhkkhkhhhhhhkhhhhhhhhhhhhhrhhhhdhhrhhhdhhrhhhddrhrk VCII'ICIbleS fOI’ CI” entries
* 0 * =1.102278 * =1.799389 * 4.4528222 *

* 1 # 1.8671779 * -0.596621 * 3.8423130 *
e 2 * -0.524181 * 1.8685209 * 3.7661390 *
E 3 * -0.380611 * 0.9691280 * 1.0840740 *

Plotting quantities directly from TTrees

o eelmaEvitas) Scatter plot shows the
_htemp . .
o 0ote correlation between variables
S 1.009
3"? >>> T.Draw("x:y","","colz")
o5l xy
20; -
o
.
& -
Oi i \ﬂw_ﬂw éﬂw 1? [|
X 0;
>>> t.Draw("x","fabs(y) < 1.4","") B
829L z
.27—
x {fabs(x) < 1.4} i number tells B
emp C
20 Mean 0.03063 YOou how = \ \ \ \ Ll H-‘ \ \ Lo 0
18- RMS 0.7085 . -5 4 3 2 1 0 1 2 3 y
na many entries
e passed condition
12—
10;
sf-
oF-
o
oF
ot L

TTree functions (very useful for quick checks)

t.Print()
t.Scan()

t.Draw("x")

How to apply cuts:
t.Draw("x", "x>0")
t.Draw("x", "x>0 && y>0")

t.Draw("y", , 'same")
t.Draw("y:x")
t.Draw("z:y:x")
t.Draw("sqgrt(x*x+y*y)")

t.Draw("x>>h1")

Prints the content of the tree
Scans the rows and columns

Draw a branch of tree

Draw “x” when “x>0"
Draw “x” when both x >0 and y >0

Superimpose “y” on “x
Make “y vs x” 2d scatter plot
Make “z:y:x” 3d plot

Plot calculated quantity

Dump a root branch to a histogram

Looping through entries of a TTree

>>> from ROOT import *

>>> f = TFile("basic.root")

>>> t = f.Get("ntuple")

>>> nEntries = t.GetEntries()

>>> hist = TH1D("x", "x",40,-4,4)
>>> for i in range(0,nEntries):

entry = t.GetEntry(1i) «
Entri 1000
o o o 80 Mnezralr?S 0.01592
>>> hist.Draw() RMS 1.009

n W B a [o] ~
o o o o o o

‘b_lllI|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

—_
o

1 O

" e n

Thank you for your attention

Any more questions?

