

Electroweak and Jet Measurements from CMS

PDF4LHC July 4, 2011

Jeremiah Mans University of Minnesota

LHC Experimental Inputs to PDFs

- Every process at a hadron collider is affected by the PDFs.
- To constrain PDFs, one must identify processes where the PDF dependence can

be cleanly separated from other effects

- Direct production of single objects is a powerful class of measurements
 - Inclusive jets
 - Inclusive photons
 - W production
 - Z production
- Given significant uncertainties in luminosity, shape measurements give the most useful input

Run: 138919

Event: 32253996

Dijet Mass: 2.130 TeV

Jet Measurements

Jet Reconstruction

- Analyses on full 2010 data set use the Particle Flow technique, which provides good resolution down to low transverse momentum
- Results use the anti-k_T jet algorithm, with cone sizes depending on the analysis

Inclusive Jet Cross-section

 Bin migration corrected using ansatz method

$$N_0 p_T^{-\alpha} \left[1 - \frac{2 p_T}{\sqrt{s}} \cosh(y) \right]^{\beta} e^{-\gamma/p_T}$$

 Magnitude of corrections 5-10% at central rapidity and 15-50% at large rapidity

CMS-QCD-10-011

Building Comparisons for PDFs

- To avoid statistical effects in data from driving apparent variations in theory, use CT10 as a comparison point, deriving uncertainty bands from five PDF sets
- Generator: NLOJET++ 2.0.1 / fastNLO 1.4

Comparing with different PDF sets

Forward Jet Cross-section

- Forward jets for this measurement are jets with 3.2<|η|<4.7
 - No tracker coverage, so jets are measured entirely from deposits in the HF calorimeter
- 3.14 pb⁻¹ used to include only data with minimal impact from pileup

Dijet Cross-section

- R=0.7 cone jets used to measure the dijet mass distribution, binned by max(|y₁|,|y₂|)
- Bin migration corrected using bin-by-bin correction factor derived from Monte Carlo, values range from 0.95-0.98

d ² σ/dM _{JU} d y _{max} (pb/TeV)	CMS $L_{int} = 36 \text{ pb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$ anti-k _T R = 0.7	■ 1.0 < y _{ms} □ 1.5 < y _{ms}	5 $1 < 1.0 (× 10^{1})$ $1 < 1.5 (× 10^{2})$ $1 < 2.0 (× 10^{3})$ $1 < 2.5 (× 10^{4})$
(lp ^π Mp/ ₂ p		99996666666	
10 ⁻³	pQCD at NLO \otimes PDF4LHC $ \infty_F = \infty_R = p_T^{ave} $ 0.2 0.3		2 3 4 M _{JJ} (TeV)

Source	Uncertainty	Error			
Jet Energy Scale	3%-5%	15%-60%			
Luminosity Uncertainty	4%	4%			
Jet Energy Resolution	10%	1%			
Scale Uncertainty	2% at 0.2 TeV, 13% at 3 TeV				
Non-perturbative Unc	15% at 0.2 TeV, 2% at 3 TeV				

CMS-QCD-10-025

Dijet mass PDF comparison

Photon Measurements

Inclusive Photon Production

Photon Cross-sections

CMS-QCD-10-037

Electroweak Measurements

Common Selection for Electroweak Measurements

Muon selection

- Require consistent, quality measurements in both tracker and muon chambers
- Isolation defined by sum of tracks and calorimeter E_T around muon direction

Electron selection

 Requirements on cluster shape, track-cluster consistency, and isolation

MET

 Corrected based on studies of hadronic recoil in Z events

Lepton Charge Asymmetry

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+\nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^-\bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+\nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^-\bar{\nu})}$$

- Valence and sea distributions change as a function of x, leading to a change in the W charge distribution as a function of y_w
 - Measurement with $\eta_{_{|}}$ is a good substitute with fewer uncertainties.
- Electron analysis uses a fit to MET, while muon analysis performs a fit to the total isolation sum

$$\xi = \sum_{\Delta R < 0.3} [p_T(tracks) + E_T(em) + E_T(had)]$$

JHEP 1104 (2011) 050 / CMS-PAS-EWK-10-006

Systematic Uncertainties

- Charge misidentification small
 - Rate shown to be $< 10^{-4}$ for muons based on cosmic ray data
 - Electron charge misidentification reduced by requiring consensus of three charge extraction techniques
- Leading uncertainties are the efficiency difference between positive and negative leptons and the energy/momentum scale
- Two lepton p_T ranges considered:

> 20 GeV/c

> 30 GeV/c

$p_{\mathrm{T}}^{\ell} > 25\mathrm{GeV}/c$													
	Electron Channel							Muon Channel					
$ \eta $ bin	[0.0,	[0.4,	[0.8,	[1.2,	[1.6,	[2.0,	[0.0,	[0.4,	[0.8,	[1.2,	[1.5,	[1.8,	
	0.4]	0.8]	1.2]	1.4]	2.0]	2.4]	0.4]	0.8]	1.2]	1.5]	1.8]	2.1]	
Charge Misident.	0.02	0.03	0.03	0.08	0.09	0.10	0	0	0	0	0	0	
Eff. Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.59	0.39	0.92	0.72	0.81	1.17	
e/μ Scale	0.11	0.09	0.19	0.47	0.40	0.45	0.50	0.48	0.50	0.48	0.50	0.42	
Sig. & Bkg. Estim.	0.16	0.19	0.26	0.33	0.25	0.25	0.23	0.29	0.34	0.40	0.53	0.58	
Total	0.73	0.73	0.77	0.90	0.85	0.87	0.80	0.68	1.10	0.95	1.08	1.37	

$p_{\mathrm{T}}^{\ell} > 30\mathrm{GeV/}c$												
	Electron Channel						Muon Channel					
$ \eta $ bin	[0.0,	[0.4,	[0.8,	[1.2,	[1.6,	[2.0,	[0.0,	[0.4,	[0.8,	[1.2,	[1.5,	[1.8,
	0.4]	0.8]	1.2]	1.4]	2.0]	2.4]	0.4]	0.8]	1.2]	1.5]	1.8]	2.1]
Charge Misident.	0.02	0.02	0.03	0.07	0.08	0.10	0	0	0	0	0	0
Eff. Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.59	0.39	0.93	0.72	0.82	1.18
e/μ Scale	0.07	0.17	0.26	0.46	0.53	0.55	0.80	0.78	0.83	0.81	0.73	0.77
Sig. & Bkg. Estim.	0.16	0.19	0.26	0.33	0.25	0.25	0.20	0.20	0.27	0.35	0.51	0.56
Total	0.72	0.75	0.79	0.91	0.92	0.93	1.01	0.90	1.27	1.14	1.21	1.52

Results

JHEP 1104 (2011) 050 / CMS-PAS-EWK-10-006

Comparison to NNPDF and HERAPDF

NNPDF predictions courtesy of Juan Rojo

HERAPDF predictions courtesy of Katerina Lipka

CMS-PAS-EWK-10-006

Z Rapidity Measurement

 Rapidity measurement probes PDF distributions, with particularly simple correlation for tree-level production:

$$\frac{1}{\sigma} \frac{d\sigma(Z \to l^+ l^-)}{dy}$$

$$y = \ln \frac{x \sqrt{s}}{m_Z}$$

- Electron measurement includes forward electrons (HF)
 - $|\eta| < 2.5 \text{ or } 3.1 < |\eta| < 4.6$
- Muon measurement for $|\eta| < 2.1$
- Final measurement made in |y|, unfolded for resolution effects using matrix-inversion technique

$$60 \text{ GeV} < m_{\parallel} < 120 \text{ GeV}$$

Rapidity Measurement

- Statistical errors dominate systematic ones in current measurement
 - Leading systematic errors have significant statistical component (e.g. background sideband statistics)

Fractional Error

Combined Measurement

Z+b

Fixed-flavour

Madgraph+Pythia pp→ Z+b

Variable-flavour k₋MLM

- Z+b measurement can provide useful information on the b-quark portions of the sea
- Results can be interpreted in two different schemes

Events/2GeV/pb

10

CMS-PAS-EWK-10-015

b-jet Identification

- b-tag based on 3d distance between primary vertex and secondary
- Two operating points:
 - High Efficiency (minimum 2 tracks), mistag < 1%
 - High purity

 (minimum 3
 tracks),
 mistag < 0.1%

Results

CMS-PAS-EWK-10-015

Variable Flavor

Sample	$\mathcal{R}(Z o ee)$ (%), $p_T^e > 25$ GeV, $ \eta^e < 2.5$	$\mathcal{R}(Z o \mu\mu)$ (%), $p_T^\mu>$ 20 GeV, $ \eta^\mu <$ 2.1
Data HE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data HP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MadGraph	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	$4.3 \pm 0.5 (theory)$	$4.7 \pm 0.5 (theory)$

Measurement Futures

- Additional improvements to JES have been completed => updates to the measurements, including some 2011 data as well, are planned
- Photon analysis will benefit from strong ongoing effort on photons to support H → γγ
- Updated measurement of W charge asymmetry including 2011 data is under preparation
- Z rapidity measurement from 2010 dataset is being finalized for publication with full covariance matrix, 2011 analysis effort beginning
- Z+b analysis will use additional luminosity to help reduce errors. W+c analysis in the approval process