Natural non-standard Higgs boson decays

Andreas Weiler (CERN)

Physics at the LHC 2010 DESY, Hamburg

o Indirect tests suggest light scalar < 158 GeV (95%cl)

Theory uncertainty Fit including theory errors Fit excluding theory errors

2

4

12

10

 $\Delta\chi^2$

• o Indirect tests suggest light scalar < 158 GeV (95%cl)

Theory uncertainty Fit including theory errors Fit excluding theory errors

4

8

Standard Higgs decays

o Coupling ~ mass, decays into heaviest available o For light Higgs, dominant decay $h \rightarrow bb$

Standard Higgs decays

o Coupling ~ mass, decays into heaviest available o For light Higgs, dominant decay $h \rightarrow bb$

Higgs missed at LEP?

Light Higgs' Small Width

The Higgs Width

The Higgs Width

Suppressing SM BR to ~ 20 % is enough

VS.

assuming $m_\eta < 2m_b$

Non-standard Higgs decays

Decay Channel	Limit
$h \rightarrow b\overline{b}$ or $\tau\overline{\tau}$	115 GeV
$h \rightarrow jj$	113 GeV
$h \rightarrow WW^*$ or ZZ^*	110 GeV
$h ightarrow\gamma\gamma$	117 GeV
h ightarrow E	114 GeV
h ightarrow AA ightarrow 4b	110 GeV
h ightarrow AA ightarrow 4 au, 4c, 4g	86 GeV
$h \rightarrow anything$	82 GeV

Constraints on 4 body decays (but 4c and 4g) almost as strong as SM limit.

Non-standard Higgs decays

Decay Channel	Limit	
$h ightarrow b\overline{b}$ or $ au\overline{ au}$	115 GeV	
h ightarrow jj	113 GeV	
$h \rightarrow WW^*$ or ZZ^*	110 GeV	
$h ightarrow\gamma\gamma$	117 GeV	
$h ightarrow ot\!$	114 GeV	arXiv:1003.0705 [hep-ex]
h ightarrow AA ightarrow 4b	110 GeV	
h ightarrow AA ightarrow 4 au, 4c, 4g		$\rightarrow 4\tau$ 0 GeV
$h \rightarrow anything$	82 GeV	

Constraints on 4 body decays (but 4c and 4g) almost as strong as SM limit.

Why is the η so light?

Why is the η so light?

Who ordered the η ?

Higgs as a pseudo Goldstone Boson

o Higgs as pGB of SU(3)/SU(2) at $f \approx (2-3) \times v$

3 = 3 = 5 broken generators

5 = 4 (Higgs doublet) + 1 (singlet)

Higgs as a pseudo Goldstone Boson o Higgs as pGB of SU(3)/SU(2) at $f \approx (2-3) \times v$ 3 = 3 = 5 broken generators 5 = 4 (Higgs doublet) + (singlet) o Quartic (D-terms) for doublet only $m_n \ll m_{h^0}$ o Quadratic term protected, finite & no tuning

Higgs as a pseudo Goldstone Boson o Higgs as pGB of SU(3)/SU(2) at $f \approx (2-3) \times v$ 3 = 3 = 5 broken generators 5 = 4 (Higgs doublet) + (singlet) o Quartic (D-terms) for doublet only $m_{\eta} \ll m_{h^0}$ o Quadratic term protected, finite & no tuning

The Higgs mass in MSSM

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2 - (b H_u^0 H_d^0 + \text{c.c.}) + \frac{1}{8}(g^2 + g'^2)(|H_u^0|^2 - |H_d^0|^2)^2.$$

At tree-level firm upper bound on the lightest of the two CP even Higgs bosons

 $m(h^0) < M_Z$

Experimentally: η

 $m(h^0) > 114 \,\mathrm{GeV}$

Either MSSM is wrong or loop correction large (75%).

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{\text{stop}}^2}{m_t^2}$

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{\text{stop}}^2}{m_t^2}$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

Tuning in the MSSM

$$m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1} \approx -m_{H_u}^2$$

Tuning in the MSSM

$$m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

 $\delta \eta$

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1} \approx -m_{H_u}^2$$
$$m_{H_u}^2(\text{loop}) = -\frac{3y_t^2}{8\pi^2} m_{\text{stop}}^2 \ln \frac{\Lambda^2}{m_{\text{stop}}^2} \approx 600 \cdot \frac{m_Z^2}{2}$$

Tuning in the MSSM

$$m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$$

Negative search at LEP: $m_H > 114$ GeV Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1} \approx -m_{H_u}^2$$

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(|TeV)$. at minimum, $\frac{m_Z^2}{2} = \frac{\mu^2 H_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{\tan^2 \beta - m_{H_d}^2} \approx -m_{H_u}^2$ But at minimum, $\delta m_{Hu}^2(\text{loop}) = -\frac{3y_t^2}{8\pi^2} m_{\text{stop}}^2 \ln \frac{n}{m_{\text{stop}}^2} \approx 600 \cdot \frac{m_Z^2}{2}$

Composite Higgs Georgi, Kaplan

Light Higgs-like scalar arises as a bound state from a strongly-interacting EWSB sector

- A composite Higgs solves the hierarchy problem
- A light Higgs is preferred by the electroweak fit

A light composite Higgs can naturally arise as a (pseudo) Goldstone boson

Minimal Composite Higgs Agashe, Contino, Pomarol, → Margarete Mühlleitner's talk o $m_Z/m_W \cos \theta_W \simeq 1 \Rightarrow T \sim 0$ o Need custodial symmetry o Replace $U(1)_{\rm Y}$ by $SU(2)_{\rm R}$ $\circ SU(2)_L \times SU(2)_R \to SU(2)_C$ o Need 'symmetry' for S-parameter: $SO(5) \rightarrow SO(4)$ o GBs: 4 SO(4) = (2,2) of SU(2)_L x SU(2)_R like the Higgs !

Yukawa and gauge interactions break SO(5), Higgs gets small mass from top

NonMCH, eg. SO(6)/SO(5)

→ Alex Pomarol's talk

In non-minimal composite Higgs models where Higgs is in SO(6)/SO(5):

 $SO(6) / SO(5) = I 5 - I 0 = (2,2)_{Higgs} + (I,I)_{\eta}$

Depending on SM fermion embedding, similar phenomenology possible.

Back to susy pGB pheno...

pGB's: Higgs + singlet

Parameterization of Higgses: GB of $SU(3) \rightarrow SU(2)$

$$\Sigma_{u,d}(\mathbf{3}_{\pm \mathbf{1/3}}) = e^{iT^a G^a} \begin{pmatrix} 0\\ 0\\ f_{u,d} \end{pmatrix}, \quad T^a G^a = \frac{1}{f} \begin{pmatrix} 0 & H\\ H^{\dagger} & \eta \end{pmatrix}$$

$$h \to \eta \eta \text{ vs. } h \to bb$$

Goldstone interaction fixed by symmetry

$$\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$$

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$

η $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f} \quad \blacksquare$ higgs η

η $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$ higgs η 1 LEP **(b)** $\sqrt{s} = 91-210 \text{ GeV}$ H \rightarrow bb 95% CL limit on ξ^2 -1 10 -2 10 20 **40** 60 80 100 120 m_H(GeV/c²)

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$

η ŋ

higgs

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\Box}$ $\sqrt{2}f$

η n

higgs

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\Box}$ $\sqrt{2f}$

η higgs η

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\overline{}}$ $\sqrt{2f}$

η

η

higgs

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\overline{}}$ $\sqrt{2f}$

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\overline{c}}$ $\sqrt{2f}$

< 400 GeV

ŋ

η

higgs

The story so far... o Found Susy pGB Higgs model, no little. hierarchy problem o Higgs + singlet η , Higgs decays mostly into η . Higgs and η mass? LEP? \Rightarrow Matter \mathcal{C} ontent! o What happens to singlet $? \Rightarrow$ Matte \Re content! b, τ, c, g mn = ? η b, τ, c, g mh higgs n , May 14, 2010

Very surprising result: **n** decays dominantly into 2 gluons!

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta$ ~ to mixing with heavy partner

	non-flipped	flipped
	Buried	Charming
Тор	$ ilde{y}_t \sim rac{m_t^3}{\sqrt{2} v_{EW}^2 f} \sim 0.2$	$ ilde{y}_t \sim rac{m_t}{\sqrt{2}f} \sim 0.2$
Charm	$ ilde{y}_c \sim rac{m_c^{3^{-11}}}{\sqrt{2}v_{FW}^2 f} \sim 10^{-9}$	$ ilde{y}_c \sim rac{m_c}{\sqrt{2}f} \sim 10^{-3}$
В	$ ilde{y}_b \sim rac{m_b m_t^2}{\sqrt{2} v_{FW}^2 f} \sim 10^{-2}$	$ ilde{y}_b \sim rac{m_b^3}{\mu_V^2 f} \sim 10^{-12}$
Tau	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta$ ~ to mixing with heavy partner

	non-flipped	flipped
	Buried	Charming
Тор	$\tilde{y}_{t} \sim \frac{m_{t}^{3}}{\sqrt{2}v_{FW}^{2}f} \sim 0.2$	$\frac{m_t}{\sqrt{2}f}$ 0.2
Charm	$ ilde{y}_c \sim rac{m_c^{3^{-11}}}{\sqrt{2}v_{EW}^2 f} \sim 10^{-9}$	$ ilde{y}_c \sim rac{m_c}{\sqrt{2}f} \sim 10^{-3}$
В	$ ilde{y}_b \sim rac{m_b m_t^2}{\sqrt{2} v_{FW}^2 f} \sim 10^{-2}$	$ ilde{y}_b \sim rac{m_b^3}{\mu_V^2 f} \sim 10^{-12}$
Tau	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta$ ~ to mixing with heavy partner

m_{eta}<2m_b

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta\sim$ to mixing with heavy partner Extra suppression

Eta decays - I loop

For m_{eta} < 2 m_b will decay mostly to two gluons $\kappa^g \eta \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$, $\kappa^g = \frac{g^2}{32\pi^2} \sum_{\psi} \frac{\tilde{y}_{\psi}}{m_{\psi}} c_2(\psi) \tau_{\psi} f(\tau_{\psi})$

Higgs decays dominantly

higgs $\rightarrow 2 \eta \rightarrow 4$ gluons

Eta is naturally light (7-8 GeV). Very non-standard Higgs phenomenology!

LHC Signals

Higgs Impostor
Subjet 'unburying'
Rich & light spectrum

Higgs Impostor

 $\mathcal{H}_u \approx (f + r/\sqrt{2}) \left(\begin{array}{c} 0\\ \sin((\tilde{v} + h/f))\\ \cos((\tilde{v} + h/f)) \end{array} \right)$

$m_r^2 \approx 4\lambda_{\mathcal{H}} f^2 \sim 350 \text{ GeV}$

It Couples like the Higgs but suppressed

 $g_{rVV} = g_{hVV}^{SM} \times (v_{EW}/f) \approx \frac{1}{2} \times g_{hVV}^{SM}$

easily visible @ LHC: $gg \rightarrow r \rightarrow ZZ \rightarrow 4l$

Jet substructure in ttH

Falkowski, Krohn, Shelton, Thallapillil, Wang in preparation

Can unbury the Higgs!

Jet Substructure II: hW→evjj

Chen, Nojiri, Sreethawong <u>arXiv:1006.1151v1</u> [hep-ph]

Today on the arxiv shown here: $m_{\eta} = 4 \text{GeV} (m_{\eta} = 8 \text{GeV}$ slightly harder)

Jet Substructure II: h₩→evjj

Chen, Nojiri, Sreethawong <u>arXiv:1006.1151v1</u> [hep-ph]

Today on the arxiv shown here: $m_{\eta} = 4 \text{GeV} (m_{\eta} = 8 \text{GeV} \text{ slightly harder})$

Jet Substructure II: hW→evjj

Chen, Nojiri, Sreethawong <u>arXiv:1006.1151v1</u> [hep-ph]

Today on the arxiv shown here: $m_{\eta} = 4GeV$ ($m_{\eta} = 8GeV$ slightly harder)

Jet algorithm	σ_S (fb)	S/\sqrt{B}
CA	1.13	7.09
KT	0.97	7.03

Table 4: Signal cross section and statistical significance after all cuts in the dijet invariant mass window 110 GeV $\leq m_{jj} \leq$ 130 GeV for $\mathcal{L} = 30$ fb⁻¹ at the LHC.

Very rich phenomenology

GeV

Summary

o The Higgs search is 'at risk' because the Higgs width is very sensitive to new light unseen physics.

 o Higgs can be below SM LEP bound (90 GeV)
o Higgs buried in QCD background (subjets & detailed LEP analysis in progress)
o Fake Higgs predicted

higgs

Simplest super-Little Higgs

Easiest SUSY embedding of LH is ''simplest little Higgs'' Kaplan, Schmaltz '03; Schmaltz '04

Extend $SU(2)_W \times U(1)_Y$ to $SU(3)_W \times U(1)_X$

Higgs doublets become SU(3) triplets $H_{u,d} \rightarrow \mathcal{H}_{u,d} = (H_{u,d}, S_{u,d}) = 3, \overline{3}$ and receive cloned partners $\Phi_{u,d} = 3, \overline{3}$

F-Term respects $SU(3)_1 \times SU(3)_2$ symmetry

 $\mathcal{W} = \mathcal{W}_{\Phi} + \mathcal{W}_{\mathcal{H}}$

Symmetry breaking: Step I

At ~ $|0 \text{ TeV}: \langle \Phi_{u,d} \rangle = (0, 0, F \sim 10 \text{ TeV})$

Global symmetries

 $\Rightarrow SU(3)_1 \times SU(3)_2 \rightarrow SU(2)_1 \times SU(3)_2$

Gauge symmetry

 $\Rightarrow SU(3)_W \times U(1)_X \to SU(2)_W \times U(1)_Y$

5 GB eaten by heavy gauge fields.

Step 2: pGBsAt ~ 500 GeV: $\langle \mathcal{H}_{u,d} \rangle = (0, 0, f_{u,d} \sim 500 \text{ GeV})$

Global symmetries

 $\Rightarrow SU(2)_1 \times SU(3)_2 \rightarrow SU(2)_1 \times SU(2)_2$

4 + I Goldstone bosons. Higgs doublet H + singlet η :

$$\Sigma_{u,d}(\mathbf{3}_{\pm \mathbf{1/3}}) = e^{iT^a G^a} \begin{pmatrix} 0\\ 0\\ f_{u,d} \end{pmatrix}, \quad T^a G^a = \frac{1}{f} \begin{pmatrix} 0 & H\\ H^{\dagger} & \eta \end{pmatrix}$$

Step 3: SM

Higgs doublet misaligns $SU(2)_2$ and $SU(2)_W$

$$\mathcal{H}_u = (H^T, \sqrt{f^2 - |H|^2}) \sin \beta$$
$$\mathcal{H}_d = (H, \sqrt{f^2 - |H|^2}) \cos \beta$$

EWSB if $v \neq 0$. $\langle H \rangle = (0, v)$ breaks to SM

 $SU(2)_W \times U(1)_Y \rightarrow U(1)_Q$
$\langle \Phi_{u,d} \rangle = (0,0, F \sim 10 \,\text{TeV})$ $\Rightarrow \quad SU(3)_W \times U(1)_X \to SU(2)_W \times U(1)_Y$ $Y = T^8 / \sqrt{3} + X$ $\langle \mathcal{H}_{u,d} \rangle = (0,0, f_{u,d} \sim 500 \,\text{GeV})$ $\Rightarrow \quad SU(2)_1 \times SU(3)_2 \to SU(2)_1 \times SU(2)_2$

 $\begin{aligned} \mathcal{H}_u &= (H^T, \sqrt{f^2 - |H|^2}) \sin \beta \\ \mathcal{H}_d &= (H^T, \sqrt{f^2 - |H|^2}) \cos \beta \\ \langle H \rangle &= (0, v) \implies \mathrm{SU}(2)_{\mathsf{W}} \times \mathrm{U}(\mathsf{I})_{\mathsf{Y}} \to \mathrm{U}(\mathsf{I})_{\mathsf{Q}} \end{aligned}$

 $\langle \Phi_{u,d} \rangle = (0,0, F \sim 10 \,\text{TeV})$ $\Rightarrow SU(3)_W \times U(1)_X \rightarrow SU(2)_W \times U(1)_Y$ $Y = T^8 / \sqrt{3} + X$ $\langle \mathcal{H}_{u,d} \rangle = (0,0, f_{u,d} \sim 500 \,\text{GeV})$ $\Rightarrow SU(2)_1 \times SU(3)_2 \rightarrow SU(2)_1 \times SU(2)_2$

 $\begin{aligned} \mathcal{H}_u &= (H^T, \sqrt{f^2 - |H|^2}) \sin \beta \\ \mathcal{H}_d &= (H^T, \sqrt{f^2 - |H|^2}) \cos \beta \\ \langle H \rangle &= (0, v) \implies \mathrm{SU}(2)_{\mathsf{W}} \times \mathrm{U}(\mathsf{I})_{\mathsf{Y}} \to \mathrm{U}(\mathsf{I})_{\mathsf{Q}} \end{aligned}$

Susy dynamics $\langle \Phi_{u,d} \rangle = (0, 0, F \sim 10 \,\mathrm{TeV})$ $\Rightarrow SU(3)_W \times U(1)_X \to SU(2)_W \times U(1)_Y$ $Y = T^8 / \sqrt{3} + X$ $\langle \mathcal{H}_{u,d} \rangle = \overline{(0,0,f_{u,d} \sim 500 \,\mathrm{GeV})}$ $\Rightarrow SU(2)_1 \times SU(3)_2 \rightarrow SU(2)_1 \times SU(2)_2$ CW I-loop $\mathcal{H}_u = (H^T, \sqrt{f^2 - |H|^2}) \sin \beta$ $\mathcal{H}_d = (H, \sqrt{f^2 - |H|^2}) \cos \beta$ $\langle H \rangle = (0, v) \implies SU(2)_W \times U(1)_Y \rightarrow U(1)_Q$

Susy dynamics $\overline{\langle \Phi_{u,d} \rangle} = (0, 0, F \sim 10 \,\mathrm{TeV})$ $\Rightarrow SU(3)_W \times U(1)_X \to SU(2)_W \times U(1)_Y$ $Y = T^8 / \sqrt{3} + X$ $\langle \mathcal{H}_{u,d} \rangle = (0,0, f_{u,d} \sim 500 \,\mathrm{GeV})$ $\Rightarrow SU(2)_1 \times SU(3)_2 \rightarrow SU(2)_1 \times SU(2)_2$ CW I-loop $\mathcal{H}_u = (H^T, \sqrt{f^2 - |H|^2}) \sin \beta$ $\mathcal{H}_d = (H, \sqrt{f^2 - |H|^2}) \cos \beta$ $\langle H \rangle = (0, v) \Rightarrow SU(2)_W \times U(1)_Y \rightarrow U(1)_Q CV I-loop$

Higgs potential

Both f/F and v/f radiatively generated through bottomtop loops in Coleman-Weinberg. Triplet potential

$$m_{\mathcal{H}_u}^2 \approx -\frac{3y_2^2 \sin^2 \beta}{2\pi^2} M_{\text{soft}}^2 \log(\Lambda/M_T)$$

$$\lambda_{\mathcal{H}_u} \approx \frac{3y_2^4 \sin^4 \beta}{8\pi^2} \log((M_{\text{soft}}^2 + M_T^2)/M_T^2)$$

physical (*m_{Higgs}*)²

 $(m_{Hu})^2$ finite !

$$\begin{split} \Delta m^2 &\approx -\frac{3m_t^2}{8\pi^2 v_{EW}^2} \left[M_T^2 \log \frac{M_{\text{soft}}^2 + M_T^2}{M_T^2} + M_{\text{soft}}^2 \log \frac{M_{\text{soft}}^2 + M_T^2}{M_{\text{soft}}^2} \right] \\ m_h^2 &= \left(1 - \frac{v_{EW}^2}{f^2} \right) \left\{ m_Z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v_{EW}^2} \left[\log \left(\frac{M_{\text{soft}}^2 M_T^2}{m_t^2 (M_{\text{soft}}^2 + M_T^2)} \right) - 2\frac{M_{\text{soft}}^2}{M_T^2} \log \left(\frac{M_{\text{soft}}^2 + M_T^2}{M_{\text{soft}}^2} \right) \right] \right\} \end{split}$$

Higgs potential

Both f/F and v/f radiatively generated through bottomtop loops in Coleman-Weinberg. Triplet potential

$$m_{\mathcal{H}_u}^2 \approx -\frac{3y_2^2 \sin^2 \beta}{2\pi^2} M_{\text{soft}}^2 \log(\Lambda/M_T)$$

$$\lambda_{\mathcal{H}_u} \approx \frac{3y_2^4 \sin^4 \beta}{8\pi^2} \log((M_{\text{soft}}^2 + M_T^2)/M_T^2)$$

physical $(m_{Higgs})^2$

 $(m_{Hu})^2$ finite !

$$\begin{split} \Delta m^2 &\approx -\frac{3m_t^2}{8\pi^2 v_{EW}^2} \left[M_T^2 \log \underbrace{\frac{M_{\rm soft}^2 + M_T^2}{M_T^2}}_{M_T^2} + M_{\rm soft}^2 \log \underbrace{\frac{M_{\rm soft}^2 + M_T^2}{M_{\rm soft}^2}}_{M_{\rm soft}^2} \right] \\ m_h^2 &= \left(1 - \frac{v_{EW}^2}{f^2} \right) \left\{ m_Z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v_{EW}^2} \left[\log \left(\frac{M_{\rm soft}^2 M_T^2}{m_t^2 (M_{\rm soft}^2 + M_T^2)} \right) - 2\frac{M_{\rm soft}^2}{M_T^2} \log \left(\frac{M_{\rm soft}^2 + M_T^2}{M_{\rm soft}^2} \right) \right] \right\} \end{split}$$

Higgs potential

Both f/F and v/f radiatively generated through bottom top loops in Coleman-Weinberg, Higgs potential finite

Eta decays - buried Higgs

 $\Gamma_{\eta \to gg} = (N_c^2 - 1) \frac{|\kappa^g|^2}{\pi} m_\eta^3$

$OPAL limits on h \rightarrow 4j$

Model independent bound $m_H > 78$ GeV

