

New Physics at Colliders

Johannes Haller (Universität Hamburg)

- Lessons from the past: Successful strategies of NP searches
 - Historic examples reminding us of the principles of searches for New Physics
- Status quo: The ever surviving Standard Model
 - Precision tests of the SM and consequences for the (B)SM physics theories
- The future: Application of the successful methods at future colliders
 - The next major machine: The LHC
 - ... and a short look beyond the LHC
- Summary of the research area "collider experiments" in Hamburg

Disclaimer:

- By definition a 30'-talk on "New Physics at colliders" is incomplete
- Try to avoid overlap with other talks and focus on results obtained in HH

Searches for New Physics in HEP started almost 100 years ago

- Rutherford, Geiger, Marsden (1911)
 Scattering of α-particles on Au-target
 - *E*~4.4 MeV
- Experimental result:
 - Excess of α 's at large scattering angles
- Interpretation: New Physics!
 - Atoms have a nucleus !
 - 10⁻¹⁴m, positively charged
 - Carries almost the full mass of the atom

Successful strategy: scattering experiments

SLAC 1967:

Scattering of electrons on protons

- Beam energies up to 20 GeV
- Experimental result:
 - Proton structure (F_2) is independent of momentum transfer (Q^2)
- Interpretation: New Physics!
 - Proton consists of point-like partons (quarks) !
- Successful strategy: scattering experiments
 - 1. Use fundamental particles as probes
 - 2. Use highest energy (\sqrt{s})
 - Heisenberg: momentum transfer determines resolution $\Delta x = \hbar/\Delta p$
 - Einstein: high energy allows production of high mass particles $E = mc^2$

- Following this path rigorously
- HERA, Hamburg (1992-2007)
 Scattering of electrons (fundamental!) on moving (energy → resolution !) protons
 - Energies: \sqrt{s} = 320 GeV
- Experimental result:
 - Precision measurement of proton structure
- Interpretation:
 - Precise confirmation of QCD
 - Constraints on New Physics e.g. quark are point-like: R<0.6·10⁻¹⁸m
- Successful strategy: scattering experiments
 - 1. Use highest energy (\sqrt{s})
 - 2. Use fundamental particles as probes
 - 3. Use highest luminosity (L)

New Physics at Colliders

- Successful strategy of HEP: scattering experiments
 - 1. Highest energy (\sqrt{s})
 - 2. Highest luminosity (L)
 - 3. Fundamental particles as probes

• Result after (for) decades: Standard Model, $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge theory

- Matter: fermions (J=1/2)
- Interactions: vector bosons (J=1)
- Mass: scalar boson (*J*=0)
- quarks and leptons in 3 families
- el.-mag. (γ), weak (*W*/*Z*) and strong (*g*)
- Higgs (H), undetected

The theory describes <u>all</u> HEP measurements with incredibly high accuracy

Johannes Haller

Successful techniques of NP searches

Technique 1: <u>Direct searches</u>

- Search for real production of new particles (M)
- "on mass shell", requirement: $M <= \sqrt{s}$
- Clean signal in kinematic distributions of decay products (e.g. invariant mass)
- Past example: Z⁰ discovery at SppS (1983)
 - Clean peak in M_{\parallel} spectrum

Today's example: search for leptoquarks (HERA)

- **LQs** couple to electrons and quarks with λ
- Expect peak in eq invariant mass spectrum
- Result: no peak over NC background
- Interpretation: exclusion limits on model parameters (M_{LQ}, λ) .
 - Particularly strong inside kinematic reach (M< \sqrt{s})

UΗ

HÌ.

New Physics at Colliders

Successful techniques of NP searches

Technique 2: indirect searches

UΗ

HÌ.

Johannes Haller

- Make use of small contributions of NP entering via virtual corrections
- Even physics far beyond \sqrt{s} can contribute, i.e. *M*» \sqrt{s} is accessible via precision!
- Precision needed to resolve the virtual corrections
- Again a HERA example: virtual contribution to NC cross-section by heavy LQs

• Most famous example for indirect approach: precision measurements on the Z^0 pole in e⁺e⁻ collisions (LEP, SLC)

- Comparison with SM prediction sensitive to virtual corrections
 - **Dependence on particles with** $M \gg \sqrt{s}$
 - SM: $\sim m_t^2$ und $\sim \ln M_H$

- Comparison performed using a χ^2 fit:
 - Check the consistency of the SM prediction with the measurement
 - Constraint the model parameters (e.g. in SM: $M_{\rm H}$)

UΗ

HÌ.

Fit uses all sensitive observables available

• Minimum at $M_H = 83^{+30}_{-23} \text{ GeV}$

- 2σ interval: [42,158] GeV
- 3σ interval: [29, 212] GeV

Light Higgs preferred by precision observables

Johannes Haller

Direct searches for the SM Higgs

- In e⁺e⁻ collisions at LEP:
 - Production via Higgsstrahlung
 - Cross section falls steeply for $M_H > \sqrt{s} M_Z$
 - Result:
 - Very strong exclusion for $M_{\rm H}$ < 113 GeV
 - No exclusion for $M_{\rm H}$ >116 GeV
- In pp collisions at TeVatron:
 - Variety of channels sensitive up to $M_{\rm H}$ ~200 GeV
 - Exclusion for (cross section limit/ SM) < 1</p>

- Combination with indirect fit provides most precise value of $M_{\rm H}$ in SM:
 - Minimum at $M_H = 116^{+15.6}_{-1.3} \text{ GeV}$
 - 2σ interval: [114,153] GeV

Johannes Haller

New Physics at Colliders

Direct measurements and fit predictions agree well

SM has several limitations and shortcomings

- Outside of HEP: hints for Dark Matter (Galaxy kinetics, Gravitational lensing, Fluctuations of CMB, ...)
- Hierarchy problem due to weakness of gravitation
 - Masses of scalar particles (*H* in the SM) unstable in presence of large scale hierarchies (*E*_{ew}«*E*_{Planck})

Example solutions proposed

- Models without fundamental scalar particle
 - Techicolor, ...
- New physics between E_{ew} and E_{Planck} to regularise the M_{H} divergence
 - e.g. supersymmetric extensions of the SM, little Higgs, ...
- Gravity is not weak but acts in more than 4 space dimensions, ie. it is only diluted in our 4D world
 - models with extra space dimensions (ADD, RS, UED)
- Many of those SM extensions offer a Dark Matter candidate
 - e.g. the LSP in supersymmetric models

Precision data and constraints on new physics

- Precision data usable to constrain new physics models (indirect technique)
- New particles \rightarrow new contributions to vacuum polarization
- Model independent procedure: *STU* parameters [Peskin and Takeuchi, Phys Rev. D46, 1 (1991)]
 - Parametrize loop effects in model independent way
 - S: isospin violating corrections
 - T: remainder in Z pole observables
 - *U*: additional corrections to M_W (often: *U*=0)
- Example: Models with Universal Extra Dimensions with radius R
 - Additional loop contributions from KKtop and KK-Higgs
 - For large R⁻¹, i.e. small radius, large scales: allowed region identical to SM
 - For small <u>R⁻¹</u>:, i.e. large radius, small scales: new effects can be compensated by larger M_H

UΗ

11

■ In summary: allowed area in UED: R⁻¹>300GeV and M_H<800 GeV

UΗ

Precision data and constraints on SUSY models

- Corrections from supersymmetric particles can be fully calculated
- → Fits of SUSY models to electroweak precision data can be done
- SUSY (MSSM) is a decoupling theory
 - → Heavy SUSY (M~2TeV) looks exactly like the SM
- Overlap region with MSSM: region in SM with a light Higgs
- Current measurements are consistent with the SM with a slight preference to SUSY
- However, no constraints on SUSY can be derived from precision collider data alone

M_W [GeV]

Recent fits include additional observables in SUSY fits; mainly:

- **Relic density of Cold Dark Mater**: $\Omega_{CDM}h^2$ LSP candidate for CDM
- Anomalous magnetic moment of the muon: $(g-2)_{\mu}$ virtual SUSY contributions
 - Currently: 3.5σ away from SM (real effect?)
- CMSSM (mSUGRA): more precise prediction of M_h
 - Minimum close to LEP limit ! $M_h = 110^{+8}_{-10} (\exp .) \pm 3 (\text{theo.}) \text{ GeV}$
 - Corrections still ~ln $M_{\rm h}$,
 - But $M_{\rm h}$ dependent on SUSY parameters (and $m_{\rm t}$) → constraint at low $M_{\rm h}$
- Allowed regions in mSUGRA parameter space:
 - Low m_0 and low $m_{\frac{1}{2}}$ preferred \rightarrow "small" SUSY masses

Johannes Haller

UΗ

ii:

New Physics at Colliders

16

Buchmueller et al. 2007

 $m_{\rm h}~[{\rm GeV}/c^2]$

- Remember our old concept of success: √s↑ and L↑
- LHC follows this concept "par excellence"
 - 7x energy and 100x luminosity of the Tevatron
- Achieved with the following nominal machine parameters:

machine parameter	LHC
luminosity [cm ⁻² s ⁻¹]	10 ³⁴
√s [TeV]	14
BC interval [ns]	25
BC rate [MHz]	40
# bunches	2835 (3564)
# protons per bunch	1.1 · 10 ¹¹

- The high centre-of-mass energy and the high luminosity enable the <u>direct</u> production of NP processes at the terascale.
 - Examples: Higgs, LQs, ED, heavy gauge bosons, 4th generation quarks, SUSY (later more) ...
- ... but this comes at a certain price
 - High $\sqrt{s} \rightarrow$ high cross section
 - High luminosity
 - ightarrow ~25 interactions/bunch crossing
 - \rightarrow ~1700 particles/ bunch crossing

centre-of-mass energy (GeV)

total pp- cross-section

Interesting numbers. But what does it mean for the experiments?

~25 inelast. ppinteractions

40 MHz !!

Challenge for experimentalists: Design and construction of detectors that can cope with these conditions

Huge detectors with high granularity and fast readout to avoid pile-up

Mun Delector Electromagnetic Calorimeter Solenoid Envard Calorimeter End Cap Toroid Enter Toroid Inter Detector

40 m

for comparison:

Rutherford to students: "There is no money for apparatus, we shall have to use our heads!"

Highly selective trigger systems:

- Selection of interesting events
 - Only 1 of ~200.000 inelastic events
- Multilayer systems
 - Dedicated hardware and filter farms
- Output: ~100 Hz
- Crucial for physics reach

Johannes Haller

New Physics at Colliders

Direct searches at the LHC: example SUSY

 $gg,q\overline{q},qq,qg \rightarrow \tilde{g}\tilde{g},\tilde{q}\tilde{q},\tilde{q}\tilde{g}$

- Long decay chains to LSP:
 - Jets (from initial squarks and gluinos)
 - Missing transverse energy (LSP)
 - Leptons

UΗ

H.

- Exact topology strongly model-dependent \rightarrow inclusive selection: At least 4 hard jets $E_{T,miss} > 100 \text{ GeV}$ Choose a sensitive observable
- Choose a sensitive observable to compare with SM

$$M_{\text{eff}} \equiv \sum_{i} |p_{T(i)}| + E_T^{\text{miss}}$$

Effective Mass [GeV]

- Expected discovery reach of the LHC in the mSUGRA parameter space:
 - Early analysis using ∫Ldt=50-200 pb⁻¹ with √s=10TeV
 - Reach up to M_{squarks}~ 750 GeV
 - Mid-term analysis using $\int Ldt = 1$ fb⁻¹ with $\sqrt{s} = 14$ TeV
 - Reach up to M_{squarks}~1.5 TeV
 - Preferred regions covered by early analyses
- Once SUSY *directly* discovered → measurements to enable *indirect* approach.
 - 2 escaping LSPs → model independent mass reconstruction impossible
 - Instead: kinematic endpoints and model dependent interpretation
 - E.g. measurement of the dilepton edge (±3 GeV) would significantly reduce the allowed region

UΗ

HÌ

- The LHC follows two of our success principles: \sqrt{s} and $L\uparrow$
- But it does not collide fundamental particles rather protons
 - Experimental measurements will have quite some uncertainties
 - LHC gives huge uncertainties for more realistic SUSY models (e.g. MSSM18)

- An electron-positron linear collider as a next step ...
 - ... would allow precision measurements of the new physics theory
 - In would enable us to obtained a detailed knowledge of the new model as we have today for the SM ("LEP for SUSY or other BSM physics").

Enormous development of scattering experiments over the last century

Enormous development of our knowledge of the laws of nature

- This development continues!
- Next step is imminent: first data from the LHC!
- Truly *Exciting Times* for fundamental physics

World-class contributions in the last decades

- Establishment of the Standard Model
- Hamburg has been a primary driving force in the field, e.g.
 - e^+e^- collisions at PETRA:
 - e[±]p collisions at HERA:

study of electroweak effects and QCD (discovery of the gluon!) study of the structure of the proton and QCD

Excellent opportunities via strong LHC+ILC involvement for the years to come

- First exploration of the Terascale
- Hamburg participates in ATLAS, CMS and ILC
 - Next two years: SM processes at LHC (W,Z, top, QCD)
 - Next decade: search for/measurement of New Physics

Hamburg offers a unique environment for the research area "collider experiment".

