

LOOPS AND LEGS 2016
LONG-DISTANCE SINGULARITIES

IN MULTI-LEG SCATTERING AMPLITUDES
GINA GARD

HIGGS CENTRE FOR THEORETICAL PHYSICS, EDINBURGH

FINAL RESULTS FOR THE 3-LOOP SOFT ANOMALOUS DIMENSION WORK WITH ФYVIND ALMELID AND CLAUDE DUR

Long-distance singularities IN MULTI-LEG SCATTERING AMPLITUDES

Plan of the talk

- Soft singularities from Wilson lines: fixed-angle factorization and rescaling symmetry.
- The soft anomalous dimension for massless partons: the dipole formula.
- Calculation of connected webs in near light-like kinematics.
- The complete 3-loop soft anomalous dimension.
- Special kinematics: collinear limit, Regge limit.

THE SOFT (EIKONAL) APPROXIMATION AND RESCALING SYMMETRY

Eikonal Feynman rules:
Assuming $k \ll p$ such that all components of k are small:

$$
\bar{u}(p)\left(-\mathrm{i} g_{s} T^{(a)} \gamma^{\mu}\right) \frac{\mathrm{i}(\not p+\not p+m)}{(p+k)^{2}-m^{2}+\mathrm{i} \varepsilon}
$$

$\longrightarrow \quad \bar{u}(p) g_{s} T^{(a)} \frac{p^{\mu}}{p \cdot k+\mathrm{i} \varepsilon}$

Rescaling invariance: only the direction and the colour charge of the emitter matter.

$$
g_{s} T^{(a)} \frac{p^{\mu}}{p \cdot k+\mathrm{i} \varepsilon}=g_{s} T^{(a)} \frac{\beta^{\mu}}{\beta \cdot k+\mathrm{i} \varepsilon}
$$ equivalent to emission from a Wilson line: $\quad \Phi_{\beta_{i}}(\infty, 0) \equiv P \exp \left\{\mathrm{i} g_{s} \int_{0}^{\infty} d \lambda \beta \cdot A(\lambda \beta)\right\}$

This symmetry is realised differently for lightlike and massive Wilson lines.

IR SINGULARITIES FROM WILSON LINES

Factorization at fixed angles:

all kinematic invariants are simultaneously taken large $p_{i} \cdot p_{j}=Q^{2} \beta_{i} \cdot \beta_{j} \gg \Lambda^{2}$ Soft singularities factorise to all orders \& computed from a product of Wilson lines:

5 hard gluon amplitude

5 Wilson line amplitude

$$
\mathcal{M}_{J}\left(p_{i}, \epsilon_{\mathrm{IR}}\right)=\sum_{K} \mathcal{S}_{J K}\left(\gamma_{i j}, \epsilon_{\mathrm{IR}}\right) H_{K}\left(p_{i}\right)
$$

\mathcal{S} is a product of Wilson lines: $\mathcal{S}=\left\langle\phi_{\beta_{1}} \otimes \phi_{\beta_{2}} \otimes \ldots \phi_{\beta_{n}}\right\rangle$
The soft anomalous dimension Γ is the logarithmic derivative of \mathcal{S}
Due to rescaling symmetry it only depends on angles: $\quad \gamma_{i j}=\frac{2 \beta_{i} \cdot \beta_{j}}{\sqrt{\beta_{i}^{2} \beta_{j}^{2}}}$

IR SINGULARITIES FOR AMPLITUDES WITH MASSLESS LEGS

Solving a renormaliaztion-group equation

Exponentiation:

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}, \epsilon\right)=\exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \Gamma\left(\lambda^{2} / s_{i j}, \alpha_{s}\left(\lambda^{2}, \epsilon\right)\right)\right\} \mathcal{H}\left(\frac{p_{i}}{\mu}, \alpha_{s}\right)
$$

The Dipole Formula:

simple ansatz for the singularity structure of multi-leg massless amplitudes

$$
\Gamma_{\operatorname{Dip} .}\left(\lambda, \alpha_{s}\right)=\frac{1}{4} \widehat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{(i, j)} \ln \left(\frac{\lambda^{2}}{-s_{i j}}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}+\sum_{i=1}^{n} \gamma_{J_{i}}\left(\alpha_{s}\right)
$$

Complete two-loop calculation by
Dixon, Mert-Aybat and Sterman in 2006 (confirming Catani's predictions from 1998).

Generalization to all orders motivated by constraints based on soft/jet factorisation and rescaling symmetry.

CORRECTIONSTO THE DIPOLE FORMULA

First possible corrections to the Dipole Formula:
Functions of conformally-invariant cross ratios at 3-loops, 4 legs:

$$
\begin{aligned}
& \Gamma=\Gamma_{\text {Dip. }}+\Delta\left(\rho_{i j k l}\right) \\
& \qquad \rho_{i j k l}=\frac{\left(p_{i} \cdot p_{j}\right)\left(p_{k} \cdot p_{l}\right)}{\left(p_{i} \cdot p_{k}\right)\left(p_{j} \cdot p_{l}\right)}
\end{aligned}
$$

Other constraints on $\Delta\left(\rho_{i j k l}\right)$:
Non-Abelian exponentiation theorem [EG, Smillie, White (2013)] implies that $\Delta\left(\rho_{i j k l}\right)$ has fully connected colour factors, such as $f^{a b e} f^{c d e} \mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d}$

Bose symmetry
Transcendental weight
Collinear limits
Regge limit

EG \& Magnea, Becher \& Neubert (2009)
Dixon, EG \& Magnea (2010)
Del Duca, Duhr, EG, Magnea \& White (2011)
Ahrens \& Neubert \&Vernazza (2012)
Caron-Huot (2013)

THE STRUCTURE OF THE SOFT ANOMALOUS DIMENSION: MASSLESSVS. MASSIVE PARTONS

$\mathbf{T}_{i} \cdot \mathbf{T}_{j} /$ planar

known @ 3-loop	forbidden to all loops	3-loop done!**
known @ 3-loop*	known @ 2-loops progress @ 3-loop	starts @ 3-loop - in progress

**Almelid, Duhr, EG - 1507.00047 v2 to appear

COMPUTING IR SINGULARITIES AT 3-LOOPS

Classes of three-loop webs connecting four Wilson lines

Single connected subgraph
Each web depends on all six angles can form conformally-invariant cross ratios (cicrs)

Two connected subgraphs
Depends on $\gamma_{14}, \gamma_{23}, \gamma_{24}, \gamma_{34}$ only. Cannot form cicrs - yields products of logs for near lightlike kinematics

Three connected subgraphs (multiple gluon exchanges)
Depends on 3 angles only!
Cannot form cicrs - yields products of logs for near lightlike kinematics

DUAL MOMENTUM BOX INTEGRAL

Parametrise the positions along the Wilson lines by $x_{i}^{\mu}=\beta_{i}^{\mu} s_{i}$

Define auxiliary momenta $p_{i}=x_{i}-x_{i-1}$
The z integral is a 4 -mass $\operatorname{Box}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$

$$
C_{4 g}=T_{1}^{a} T_{2}^{b} T_{3}^{c} T_{4}^{d}\left[f^{a b e} f^{c d e}\left(\gamma_{13} \gamma_{24}-\gamma_{14} \gamma_{23}\right)+f^{a d e} f^{b c e}\left(\gamma_{12} \gamma_{34}-\gamma_{13} \gamma_{24}\right)+f^{a c e} f^{b d e}\left(\gamma_{12} \gamma_{34}-\gamma_{14} \gamma_{23}\right)\right]
$$

$$
W_{4 g}=g_{s}^{6} \mathcal{N}^{4} C_{4 g} \int_{0}^{" \infty "} d s_{1} d s_{2} d s_{3} d s_{4} \operatorname{Box}\left(x_{1}-x_{4}, x_{2}-x_{1}, x_{3}-x_{2}, x_{4}-x_{3}\right)
$$

$$
\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right)=\lambda\left(\begin{array}{c}
c a \\
c(1-a) \\
(1-c) b \\
(1-c)(1-b)
\end{array}\right)
$$

Integration over λ yields an overall $1 / \epsilon$ UV pole. Remaining integrations can be done in 4 dimensions.

Ø. Almelid, C. Duhr, EG

CONNECTED THREE-LOOP WEBS WITH TWO 3-GLUON VERTICES

Ø. Almelid, C. Duhr, EG
A similar mapping - but with a diagonal box

$W_{4 g}$ and $W_{(3 g)^{2}}$ may have non-trivial kinematic dependence in the limit $\beta_{i}^{2} \rightarrow 0$

$$
\rho_{i j k l}=\frac{\gamma_{i j} \gamma_{k l}}{\gamma_{i k} \gamma_{j l}}=\frac{\left(\beta_{i} \cdot \beta_{j}\right)\left(\beta_{k} \cdot \beta_{l}\right)}{\left(\beta_{i} \cdot \beta_{k}\right)\left(\beta_{j} \cdot \beta_{l}\right)} \quad \begin{array}{ll}
\rho_{1234} & =z \bar{z} \\
\rho_{1432} & =(1-z)(1-\bar{z})
\end{array}
$$

We extract the asymptotic near-lightlike behaviour using the Mellin-Barnes technique. The remaining MB integral is three-fold, and can be converted into an iterated parameter integral and be expressed in terms of polylogarithms.

sUMMING THE CONNECTED WEBS RESULTS

$$
\begin{aligned}
& w_{4 g}^{(3,-1)}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f^{a b e} f^{c d e}(z \bar{z}-z-\bar{z})\right. \\
& \left.+f^{a d e} f^{b c e}(1-z \bar{z})+f^{a c e} f^{b d e}(1-z-\bar{z})\right] \frac{1}{z-\bar{z}} g_{1}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)
\end{aligned}
$$

$$
w_{(12)(34)}^{(3,-1)}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d} f^{a b e} f^{c d e}\left[g_{0}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)-\frac{z \bar{z}-z-\bar{z}}{z-\bar{z}} g_{1}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)\right.
$$

cancels in the sum!
Pure function of uniform weight 5 ($\mathcal{N}=4$ SYM property) Symbol alphabet $\{z, \bar{z}, 1-z, 1-\bar{z}\}$ relating to collinear / Regge limits

FROM THE CONNECTED WEBS TO THE FULL QUADRUPOLETERM IN THE SOFT ANON. DIM.

After applying Jacobi Identity one finds
$w_{\text {con. }}^{(3,-1)}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f^{a d e} f^{b c e} \mathcal{F}_{1}{ }^{\text {con. }}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)+f^{a b e} f^{c d e} \mathcal{F}_{2}{ }^{\text {con. }}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)\right]$
and the functions separate into a polylogarithmic function of depending only on conformally invariant cross ratios via $\{z, \bar{z}\}$, and a function involving purely logarithmic dependence on individual cusp angles:

$$
\mathcal{F}_{n}^{\text {con. }}\left(z, \bar{z},\left\{\gamma_{i j}\right\}\right)=\mathcal{F}_{n}{ }^{\text {con. }}(z, \bar{z})+Q_{n}^{\text {con. }}\left(\left\{\log \left(\gamma_{i j}\right)\right\}\right)
$$

Rescaling symmetry implies that the quadrupole contribution to the light-like soft anomalous dimension would depend exclusively on $\{z, \bar{z}\}$!

So far put aside non-connected webs, and webs connecting fewer than 4 lines. All these, in the light-like asymptotics, involve only logarithms, $\ln \left(\gamma_{i j}\right)$.

Any kinematic dependence which isn't rescaling invariant must cancel out!

COLOUR CONSERVATION

Colour conservation for n Wilson lines: $\quad\left(\mathbf{T}_{1}+\mathbf{T}_{2}+\mathbf{T}_{3}+\ldots \mathbf{T}_{n}\right)|\mathcal{H}\rangle=0$
Considering the diagrams that connect 4 lines
$\Gamma_{4}(1,2,3,4)=\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left(f^{a b e} f^{c d e} H_{4}[(1,2),(3,4)]+f^{a c e} f^{b d e} H_{4}[(1,3),(2,4)]+f^{a d e} f^{b c e} H_{4}[(1,4),(2,3)]\right)$
with permutation symmetry $\quad H_{4}[(i, j),(k, l)]=-H_{4}[(j, i),(k, l)]=H_{4}[(k, l),(i, j)]$
Applying colour conservation to eliminate \mathbf{T}_{4} — the 4-line result may be expressed as

$$
\Gamma_{4}(1,2,3,4)=-\frac{1}{2} f^{a b e} f^{c d e} \sum_{\substack{(i, j, k) \in(1,2,3) \\ j<k}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}\left(H_{4}[(i, j),(k, 4)]+H_{4}[(i, k),(j, 4)]\right)
$$

Colour conservation relates 4 - and 3-line colour factors:

Diagrams connecting fewer Wilson lines are also relevant for Δ_{n}

WEBS WITH three lines

So we also computed three-line diagrams:

Colour basis: $\quad f^{a b e} f^{c d e}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}$

$$
N_{c} f^{a b c} \mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}
$$

contributes to Δ_{n}
does not contribute

WEBS WITH TWO LINES

Similarly colour conservation on 3 lines relates to 2 lines:

Colour basis: $f^{a b e} f^{c d e}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\}\left\{\mathbf{T}_{j}^{c}, \mathbf{T}_{j}^{d}\right\}$ \square contributes to Δ_{n}
$\mathbf{T}_{i} \cdot \mathbf{T}_{j}$
does not contribute

surprise with three lines

Consider now the soft anomalous dimension for three coloured lines.
Given that no conformal cross ratios can be formed, the expectation was: no corrections beyond the dipole formula, i.e. $\Delta_{3}=0$.

Summing all 2- and 3-line webs we get, instead, a constant:

$$
\Delta_{3}=-16\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(\zeta_{5}+2 \zeta_{2} \zeta_{3}\right) f^{a b e} f^{c d e} \sum_{\substack{(i, j, k) \in(1,2,3) \\ j<k}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}
$$

THE COMPLETE 3-LOOP CORRECTION TO THE DIPOLE FORMULA

$$
\begin{aligned}
& \Delta(z, \bar{z})=16\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} f_{a b e} f_{c d e}\left\{\begin{aligned}
\sum_{1 \leq i<j<k<l \leq n} &
\end{aligned} \quad \mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d}(F(1-1 / z)-F(1 / z))\right. \\
&+\mathbf{T}_{i}^{a} \mathbf{T}_{k}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{l}^{d}(F(1-z)-F(z)) \\
&\left.+\mathbf{T}_{i}^{a} \mathbf{T}_{l}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{k}^{d}(F(1 /(1-z))-F(1-1 /(1-z)))\right] \\
&\left.-\sum_{i=1}^{n} \sum_{\substack{1 \leq j<k \leq n \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}\left(\zeta_{5}+2 \zeta_{2} \zeta_{3}\right)\right\}
\end{aligned}
$$

$$
F(z, \bar{z})=\mathcal{L}_{1,0,1,0,1}(z, \bar{z})+2 \zeta_{2}\left(\mathcal{L}_{0,1,1}(z, \bar{z})+\mathcal{L}_{0,0,1}(z, \bar{z})\right)
$$

Ø. Almelid, C. Duhr, EG
$\mathcal{L}_{10 \ldots(z)}$ are the single-valued harmonic polylogarithms introduced by Francis Brown in 2009. They are defined in the region where $\bar{z}=z^{*}$

THE COLLINEAR LIMIT

$$
\mathcal{M}_{n}\left(p_{1}, p_{2},\left\{p_{j}\right\} ; \mu\right) \xrightarrow{\xrightarrow[\| 2]{ }} \mathbf{S p}\left(p_{1}, p_{2} ; \mu\right) \mathcal{M}_{n-1}\left(P,\left\{p_{j}\right\} ; \mu\right)
$$

In particular, IR singularities of the splitting amplitude are those present in n parton scattering (with $1|\mid 2$) and not in $\mathrm{n}-1$ parton scattering:

$$
\Gamma_{\mathbf{S p}}=\Gamma_{n}-\Gamma_{n-1}
$$

The general expectation (\& recent proof by [Feige \& Schwartz 1403.6472]) is that the splitting amplitude depends exclusively on the variables of the collinear pair. This is automatically realised by the dipole formula for the singularities.

THE COLLINEAR LIMIT AT 3 LOOPS

At three loops there are diagrams that could introduce correlation between collinear partons and the rest of the process:

$$
\Gamma_{\mathbf{S} \mathbf{p}}\left(p_{1}, p_{2} ; \mu\right)=\Gamma_{\mathbf{S p}}^{\text {dip. }}\left(p_{1}, p_{2} ; \mu\right)+\Delta_{\mathbf{S p}}
$$

But through intricate cancellations the correction is a constant depending only on the colour degrees of freedom of the collinear pair:

$$
\Delta_{\mathbf{S p}}=\left.\left(\Delta_{n}-\Delta_{n-1}\right)\right|_{1 \| 2}=-24\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(\zeta_{5}+2 \zeta_{2} \zeta_{3}\right)\left[f^{a b e} f^{c d e}\left\{\mathbf{T}_{1}^{a}, \mathbf{T}_{1}^{c}\right\}\left\{\mathbf{T}_{2}^{b}, \mathbf{T}_{2}^{d}\right\}+\frac{1}{2} C_{A}^{2} \mathbf{T}_{1} \cdot \mathbf{T}_{2}\right]
$$

Conclusion: IR singularities of the splitting amplitudes are independent of the rest of the process.
Consistent with expectations!

HIGH-ENERGY (REGGE) LIMIT

Expanding Δ_{4} at large s/(-t) we get no log-enhanced terms, just a constant. This can be contrasted with dedicated calculations of the high-energy limit.
The Regge limit is dominated by t-channel gluon exchange. Leading logs of (-t/s) are summed through Reggeization:

$$
\frac{1}{t} \longrightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}
$$

The gluon Regge pole is

$$
\alpha(t)=\frac{1}{4}\left(\mathbf{T}_{2}+\mathbf{T}_{3}\right)^{2} \int_{0}^{-t} \frac{d \lambda^{2}}{\lambda^{2}} \widehat{\gamma}_{K}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right)
$$

Korchemskaya and Korchemsky (1996)
Del Duca, Duhr, EG, Magnea \& White (2011)
which is fully consistent with the dipole formula. This consideration excludes any quadrupole contribution $\alpha_{s}^{3} \log ^{n}(-t / s)$ with $n \geq 2$ for the Re part. $\mathrm{i} \alpha_{s}^{3} \log ^{2}(-t / s)$ is excluded by an explicit two Reggeon calculation
$\alpha_{s}^{3} \ln (-t / s) \quad$ is excluded by a dedicated three Reggeon calculation.

CONCLUSIONS

- IR singularities of massless scattering amplitudes are now known to 3-loops.
- As expected, the first correction to the dipole formula occurs at three loops. For three partons it is a constant, while for four or more, a quadrupole interaction correlating simultaneously colour and kinematics of 4 patrons.
- The quadrupole term is expressed in terms of single-valued harmonic polylogarithms of weight 5 , depending on $\{z, \bar{z}\}$. These variables are simple algebraic functions of conformally-invariant cross ratios, and they manifest the symmetries and analytic structure of the quadruple interaction.
- Splitting amplitudes receive a kinematic-independent correction beyond the dipole formula at 3-loop, but remains independent of the rest of the process!
- Regge limit: consistency with known results at LL and NLL and new predictions at NNLL and beyond.

