Research in Germany for a TPC at the ILC

LC Forum, June 14th 2010

Peter Schade R. Diener, C. Rosemann DESY

- ILD: a multi purpose detector for the ILC
- TPC as main tracker •
 - Robust tracking: ~ 200 space points per track (ILD TPC with pad readout)
 - Robust towards machine backgrounds (~99% tracking efficiency)
 - dE/dx-measurement input to particle ID
 - Low material budget
- Requirements for an ILC TPC
 - Minimum of X₀ inside Calorimeter (<4% barrel, <15% endcaps) \rightarrow lightweight design of field cage and anode
 - $\sigma \sim 100 \mu m (r\phi)$ and $\sim 500 \mu m (rz) @ 3.5 T$ \rightarrow stringent requirements on field homogeneity
 - 2-track resolution <2mm ($r\phi$) and <5-10mm (rz)
 - dE/dx res. $<5\% \rightarrow e/pi$ separation, for example

Page 2 / 18

- Challenges for the TPC
 - Resolution goal unprecedented by previous TPCs in collider experiments
 - Pile up of many bunch crossings \rightarrow ion back drift
 - Lightweight readout electronics and field cage
- TPC readout: based on Micro Pattern Gas Detectors (MPGDs):
 - Gas Electron Multiplier (GEMs) or Micromegas
- MPGD not used for TPC readout in collider • experiments yet
- Advantages:
 - Intrinsic Ion feedback suppression
 - Can be mounted on lightweight structures
 - Homogeneous surface of readout plane
- Pad or silicon pixel readout

- Challenges for the TPC
 - Resolution goal unprecedented by previous TPCs in collider experiments
 - Pile up of many bunch crossings \rightarrow ion back drift
 - Lightweight readout electronics and field cage
- TPC readout: based on Micro Pattern Gas Detectors (MPGDs):
 - Gas Electron Multiplier (GEMs) or Micromegas
- MPGD not used for TPC readout in collider • experiments yet
- Advantages:
 - Intrinsic Ion feedback suppression
 - Can be mounted on lightweight structures
 - Homogeneous surface of readout plane
- Pad or silicon pixel readout

- Challenges for the TPC
 - Resolution goal unprecedented by previous TPCs in collider experiments
 - Pile up of many bunch crossings \rightarrow ion back drift
 - Lightweight readout electronics and field cage
- TPC readout: based on Micro Pattern Gas Detectors (MPGDs):
 - Gas Electron Multiplier (GEMs) or Micromegas
- MPGD not used for TPC readout in collider • experiments yet
- Advantages:
 - Intrinsic Ion feedback suppression
 - Can be mounted on lightweight structures
 - Homogeneous surface of readout plane
- Pad or silicon pixel readout

TPC R&D TPC R&D Collaboration

• German efforts embedded in international collaboration (LCTPC)

ic

Demonstration Phase TPC R&D

- Goals: Proof of principle
 - Operation of TPC with MPGD readout
 - Study working parameters \rightarrow stable operation
 - Demonstrate the point resolution
 - Lightweight field cage design
- Small TPC prototypes (dia. ~30 cm)
 - Mostly GEM amplification with pad readout studied
- Result: •
 - Stable TPC operation with MPGD readout possible
 - Resolution goal demonstrated

Groups involved: DESY, Aachen, Karlsruhe, Bonn, Rostock, Freiburg, Siegen

Hamburg

Aachen

TPC R&D Demonstration Phase

- Goals: Proof of principle
 - Operation of TPC with MPGD readout
 - Study working parameters \rightarrow stable operation
 - Demonstrate the point resolution
 - Lightweight field cage design
- Small TPC prototypes (dia. ~30 cm)
 - Mostly GEM amplification with pad readout studied
- Result: •
 - Stable TPC operation with MPGD readout possible
 - Resolution goal demonstrated

Groups involved: DESY, Aachen, Karlsruhe, Bonn, Rostock, Freiburg, Siegen

Siegen

TPC R&D Consolidation Phase

- Goals:
 - Move from small-size prototypes to realistic prototypes
 - Large surface MPGD structures
 - Several readout modules in parallel \rightarrow study joints between modules
 - Realistic field cage design
 - Operation in a test beam area

Groups involved: DESY / Hamburg, Bonn, Siegen Rostock, Freiburg, Mainz

TPC R&D Test Beam Setup

- Installed at DESY in test beam T24/1
- In large parts funded by European EUDET project
- Comprises:
 - Large prototype field cage (d = 72 cm)
 - Modular read-out end plate
 - Superconducting 1T magnet from Japan
 - Movable stage for the magnet
 - Gas and slow control system
 - HV system
 - Beam and cosmic trigger
 - Planned: external reference via silicon detector
- Setup became available in November 2008 Groups i

Groups involved: DESY / U Hamburg, Cornell, Brussels, Lund, Saclay, Rostock, Siegen

TPC R&D Test Beam Setup

- Installed at DESY in test beam T24/1
- In large parts funded by European EUDET project
- Comprises:
 - Large prototype field cage (d = 72 cm)
 - Modular read-out end plate
 - Superconducting 1T magnet from Japan
 - Movable stage for the magnet
 - Gas and slow control system
 - HV system
 - Beam and cosmic trigger
 - Planned: external reference via silicon detector
- Setup became available in November 2008 Groups involved:

Aimant

PCMAG

TPC R&D Pixel Readout

- Advantage of pixelized readout
 - 'Digital TPC'
 - \rightarrow pixel chip with integrated electronics
 - Integrated and lightweight anode
 - In theory: best possible resolution \rightarrow limited only by gas diffusion
 - Single clusters become clearly visible \rightarrow cluster counting
- Studied: Pixel chip with GEM amplification
 - Test beam operations with LP module and in small prototypes
 - Optimization studies for pixel size

 Also studies with INGrid and GEMGrid amplification structures are being performed

 1×1

GEMs

redframe

Groups involved: Bonn, Freiburg, Siegen

TPC R&D Pixel Readout

- Advantage of pixelized readout
 - 'Digital TPC'
 - \rightarrow pixel chip with integrated electronics
 - Integrated and lightweight anode
 - In theory: best possible resolution \rightarrow limited only by gas diffusion
 - Single clusters become clearly visible \rightarrow cluster counting
- Studied: Pixel chip with GEM amplification
 - Test beam operations with LP module and in small prototypes
 - Optimization studies for pixel size

anode plane **GEMs** readout plane quad-boards reinforcement of anode plane redframe

 Also studies with INGrid and GEMGrid amplification structures are being performed

Groups involved: Bonn, Freiburg, Siegen

TPC R&D GEM Amplification

- New mounting structure for GEMs
 - Ceramic grid to support the GEM foils
 - Instead of stretching with broad frames
- Advantages:
 - More lightweight structure
 - Improved flatness of GEM foil:
 - less gain variations
 - better electric field homogeneity in the TPC
 - Simpler construction and possibility to cover large areas with minimal dead space
- Test in small prototype successfully finished
 - Now development of a read-out module for the LP Module frame is ready
 - GEMs, ceramic frames and pad plane are in development/production

Groups involved:

DESY, Bonn

TPC R&D GEM Amplification

- New mounting structure for GEMs
 - Ceramic grid to support the GEM foils
 - Instead of stretching with broad frames
- Advantages:
 - More lightweight structure
 - Improved flatness of GEM foil
 - less gain variations
 - better electric field homogeneity in the TPC
 - Simpler construction and possibility to cover large areas with minimal dead space
- Test in small prototype successfully finished
 - Now development of a read-out module for the LP Module frame is ready
 - GEMs, ceramic frames and pad plane are in development/production

Groups involved: DESY, Bonn

TPC R&D Ion backdrift

Peter Schade, DESY Hamburg

TPC R&D Software

Simulation

- International development of the MarlinTPC software: Simulation, reconstruction and analysis of MPGD TPC data
- Software uses the ILC software framework (Marlin, Gear, LCCD)
- Modular software design allows to easily compare algorithms
 and reuse existing solutions

Reconstruction

TPC R&D Summary and Outlook

- LCTPC collaboration performs R&D work for a TPC at the ILC
- German groups involved in many topics and studies
- GEMs and Micromegas with standard pad or pixel read-out are under investigation for the TPC read-out
 - Feasibility of the principle demonstrated
 - Many studies with small TPC prototypes still ongoing
- R&D on realistic size readout modules and electronics has started
 - Large TPC Prototype test beam setup
- Next steps involve the design of a ILD TPC:
 - Concept for a final field cage \rightarrow experience from the construction of the LP
 - Development of a lightweight, stable read-out end plate
 - Construction of large scale read-out modules
 - Read-out electronics including cabling and cooling
 - Finalization of a TPC software framework for data and simulation

