
Zoltán Trócsányi 
!

University of Debrecen and MTA-DE Particle Physics Research Group 
in collaboration with 

A. Kardos, M.V. Garzelli 
!
!
!
!
!
!

Loops and Legs in Quantum Field Theory, Weimar 
April 29, 2014

New results for precision Higgs 
Physics



Zoltán Trócsányi 
!

University of Debrecen and MTA-DE Particle Physics Research Group 
in collaboration with 

A. Kardos, M.V. Garzelli 
!
!
!
!
!
!

Loops and Legs in Quantum Field Theory, Weimar 
April 29, 2014

Precision tools for Higgs Physics 
with PowHel



3

Motivation 

Method 

Predictions 

Conclusions and Plans

Outline



Motivation



5

mH [GeV]=125.5±0.2stat±0.6syst (ATLAS 2013) 
    125.7±0.3stat±0.3syst (CMS 2013) 
!

All measured properties are consistent with SM 
expectations within experimental uncertainties 

branching ratios as predicted 
spin zero 
parity +         
couples to masses of W and Z (with cv=1 within 
experimental uncertainty)

Higgs boson discovered at the LHC
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t-quark: potential tool for discovery

The t-quark is heavy, Yukawa coupling ∼1 
mt [GeV]=173.34±0.64 (LHC+TeVatron, 2014) 
                      (⇒ yt=0.997±0.003) 

⇒ plays important role in Higgs physics 
(more tantalizing: mt mZ = (125.7±0.3)2 GeV2) 

yt cannot be measured in H → tT decay (mt > mH)
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How to measure yt?

H → γγ is sensitive to yt through t-quark loop,      

but rates are small and W loop also contributes  
!
!
!
gg → H is sensitive to yt through t-quark loop         

if only SM model particles contribute (so far xsec is 
consistent with SM) 
!
!
gg → H is sensitive to BSM physics                         

if yt is measured separately
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tTH hadroproduction

yt can be measured in pp → tTH through many decay 

channels (all very difficult): 
!
!
hadrons with single lepton: 
hadrons with dilepton: 
hadrons with hadronic tau: 
diphoton with lepton: 
diphoton with hadrons: 
same sign dilepton: 
3 leptons with di, trilepton: 
4 lepton with di, trilepton:

t ! b`⌫, t̄ ! b̄jj, H ! ��

t ! b jj, t̄ ! b̄jj, H ! ��

t ! b`⌫, t̄ ! b̄jj, H ! bb̄

t ! b`⌫, t̄ ! b̄`⌫, H ! bb̄

t ! b`⌫, t̄ ! b̄jj, H ! ⌧+h ⌧�h

t ! b jj, t̄ ! b̄jj, H ! `⌫`[⌫]

t ! b`⌫, t̄ ! b̄jj, H ! `[⌫]`[⌫]

t ! b`⌫, t̄ ! b̄`[⌫], H ! `[⌫]`[⌫]
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…with decays: the t-quark is not detected because it 
decays before hadronization 

The importance of being top

|Vtb|2 � |Vts|2, |Vtd|2

These require precise predictions of 
distributions at hadron level for 

pp →tT+hard X, X = H,W,Z,γ,j,bB,2j...



...to distributions, full of pitfalls & difficulties

There is a long way from loops and legs...

Method

Cerro Torre Patagonia, courtesy of  V Del Duca
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SMC idea: use probabilistic picture of parton splitting in the 
collinear approximation, iterate splitting to high orders

From standard SMC to POWHEG MC
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SMC idea: use probabilistic picture of parton splitting in the 
collinear approximation, iterate splitting to high orders

Standard MC first emission:

From standard SMC to POWHEG MC

d⇤SMC = B(⇤n)d⇤n

�
�SMC(t0) + �SMC(t)

�s(t)
2⇥

1
t

P (z)
⇧ ⌅⇤ ⌃

⇥(t� t0) d⇤SMC
rad

⇥

= lim
k��0

R(⇤n+1)/B(⇤n)
�

B(�n)d�n = �LO
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SMC idea: use probabilistic picture of parton splitting in the 
collinear approximation, iterate splitting to high orders

Standard MC first emission:

From standard SMC to POWHEG MC

POWHEG MC first emission:

B̄(�n) = B(�n) + V (�n) +
� ⇥

R(�n+1)�A(�n+1)
⇤
d�rad

d⇤SMC = B(⇤n)d⇤n

�
�SMC(t0) + �SMC(t)

�s(t)
2⇥

1
t

P (z)
⇧ ⌅⇤ ⌃

⇥(t� t0) d⇤SMC
rad

⇥

= lim
k��0

R(⇤n+1)/B(⇤n)

d� = B̄(⇤n)d⇤n

�
�(⇤n, pmin

� ) + �(⇤n, k�)
R(⇤n+1)
B(⇤n)

⇥(k� � pmin
� ) d⇤rad

⇥

�
B(�n)d�n = �LO

[Frixione, Nason, Oleari 
arXiv: 0709.2092]
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POWHEG-BOX framework

POWHEG-BOX

�B B Bµ�
j

VRBij
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PowHel framework

POWHEG-BOXHELAC-NLO

PowHel

RESULT of PowHel: 

Les Houches file of Born and Born+1st radiation 
events (LHE) ready for processing with SMC followed 
by almost arbitrary experimental analysis

[Bevilaqua et al, 
arXiv: 1110.1499]

[Alioli, Nason, 
Oleari, Re,  
arXiv: 1002.2581]
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Why should we care about  
NLO + PS?

•Hadrons in final state
•Closer to experiments, realistic analysis 
becomes feasible
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Why should we care about  
NLO + PS?

•Hadrons in final state
•Closer to experiments, realistic analysis 
becomes feasible
•Decayed tops
•Parton shower can have significant effect 
(e.g. in Sudakov regions)
•For the user: 

event generation is, faster than an NLO 
computation

(once the code is ready!)
...but we deliver the events on request



tTbB production
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Choice of scales

‣ QCD corrections are  
‣ large with scales µ0 = mt or mt+mbb/2 (about 80%) 
‣ moderate with dynamical scale µ0=(mt2 pT,bpT,b)1/4 

(about 25%) (proposed by Bredenstein et al in 
arXiv:1001.4006), implying better convergence by 
emulating higher order effects through CKKW-
type scale choice 

−

−
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Choice of scales

‣ QCD corrections are  
‣ large with scales µfix = mt or mt+mbb/2 (about 70%) 
‣ moderate with dynamical scale µdyn= (mt2 pT,bpT,b)1/4 

(about 25%) (proposed by Bredenstein et al in 
arXiv:1001.4006), implying better convergence by 
emulating higher order effects through CKKW-
type scale choice,  

but 

‣ we simulate higher order effects through the PS: 
µdyn is too small near threshold where cross 
section is largest, even for a b with pT = 100 GeV 
and another b with pT = 20 GeV  µdyn = 90 GeV << mt 
resulting in an artificially large xsection at LO

−

−
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Choice of scales

We use the dynamical scale µdyn= HT/2, where HT is 
the scalar sum of transverse masses of final-state 
particles that is a good scale also near threshold
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Choice of scales
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the scalar sum of transverse masses of final-state 
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Choice of scales

We use the dynamical scale µdyn= HT/2, where HT is 
the scalar sum of transverse masses of final-state 
particles that is a good scale also near threshold

 With this scale 

✓ the K factor is even smaller,                           
implying good convergence

✓  the cross sections are 

smaller  (with BDDP cuts):

σLO = 534 fb,  σNLO = 630 fb,  K = 1.18

scale dependence: +32%-22%, largest if µR = µF = µdyn
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Small changes in shapes of distributions
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Small changes in shapes of distributions
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Formal accuracy of the POWHEG MC

hOi =
Z

d⇥B
eB

�(p? ,min)O(⇥B) +

Z
d⇥rad�(p?)

R

B
O(⇥R)

�
=

...
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Formal accuracy of the POWHEG MC

hOi =
Z

d⇥B
eB

�(p? ,min)O(⇥B) +

Z
d⇥rad�(p?)

R

B
O(⇥R)

�
=

=

⇢Z
d�B [B + V ]O(�B) +

Z
d�RRO(�R)

�
(1 +O(�S))

�O⇥NLO
Useful for checking

...
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LHE vs. NLO
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LHE vs. NLO
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Message: 
we can trust the LHE’s, so can make 



Predictions



26

LHE: distributions from events at BORN+1st radiation 

Decay: on-shell decays of heavy particles (t-quarks), 
shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included 
(t-quarks kept stable)

Four possible forms of predictions
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LHE: distributions from events at BORN+1st radiation 

Decay: on-shell decays of heavy particles (t-quarks), 
shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included 
(t-quarks kept stable)

Full SMC: decays, parton showering and hadronization 
are included by using PYTHIA or HERWIG

Number and type of particles are very different =>             
to study the effect of SMC we employ selection cuts 
to keep the cross section fixed

Four possible forms of predictions
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NLO vs. PS and decay vs. full SMC  
at 14TeV, µ = HT/2
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NLO vs. PS and decay vs. full SMC  
at 14TeV, µ = HT/2
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NLO vs. PS and decay vs. full SMC  
at 14TeV, µ = HT/2
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Table 1: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 18.1 ± 0.8 26.8 ± 1.0 60.9 ± 1.5 105
tt̄ + b 34.3 ± 1.1 51.4 ± 1.4 111 196
tt̄ + cc̄ 13.4 ± 0.9 20.5 ± 1.0 47.0 ± 1.6 80.9 ± 2.4
tt̄ + LF 244 359 822 1,425

tt̄ others 20.5 ± 1.1 25.6 ± 1.1 63.7 ± 1.9 109
multijet < 0.1 1.4 ± 1.2 1.4 ± 1.2 2.9 ± 2.2
W + jets < 0.1 < 0.1 < 0.1 < 0.1

VV < 0.1 0.3 ± 0.1 < 0.1 0.4 ± 0.7
Single top-tW 7.9 ± 2.0 11.6 ± 2.5 25.1 ± 3.7 44.7 ± 4.1

Z/g⇤ ! ll 5.6 ± 4.3 5.7 ± 3.9 2.9 ± 3.2 14.4 ± 5.7
Total expected 351 512 1,159 2,023

Data 367 506 1,145 2,018

Table 2: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 4.0 ± 0.4 5.9 ± 0.5 13.3 ± 0.7 23.3 ± 1.5
tt̄ + b 13.6 ± 0.7 16.8 ± 0.8 37.9 ± 1.1 68.2 ± 2.1
tt̄ + cc̄ 3.1 ± 0.4 4.6 ± 0.5 9.5 ± 0.7 17.3 ± 1.6
tt̄ + LF 62.2 ± 2.0 94.1 ± 2.3 211 ± 3.6 368

tt̄ others 9.5 ± 0.8 11.8 ± 0.8 28.3 ± 1.3 49.7 ± 2.2
multijet < 0.1 0.3 ± 0.6 0.3 ± 0.6 0.7 ± 1.6
W + jets < 0.1 < 0.1 < 0.1 < 0.1

VV < 0.1 < 0.1 < 0.1 < 0.1
Single top-tW 2.8 ± 1.24 2.7 ± 1.2 4.4 ± 1.7 9.9 ± 2.7

Z/g⇤ ! ll 2.2 ± 3.02 < 0.1 2.9 ± 3.2 5.2 ± 3.9
Total expected 100 139 315 555

Data 90 148 311 549

5 Cross section ratio measurement

After the final selection, most of the events, around 97% are from tt events which contain at
least 2 b-quarks predicted in the top quarks pair decay. The final selection includes at least two
b-tagged jets. We used the third and fourth highest CSV discriminator jets to separate tt̄bb̄ from
other processes according to its heavy flavor content. The purity of identifying b-jets from top
decay in tt̄LF process by selecting the two highest CSV discriminator jets is found to be around
90%.

The fraction of tt̄bb̄ events with respect to tt̄jj events was obtained from data by fitting to the
CSV b-tagging discriminator. Figure 2 shows the normalized distribution of the CSV b-tagging

30

Comparison to CMS PAS TOP-13-010

Available on the CERN CDS information server CMS PAS TOP-13-010

CMS Physics Analysis Summary

Contact: cms-pag-conveners-top@cern.ch 2013/10/04

Measurement of the Cross Section Ratio s(tt̄bb̄)/s(tt̄jj) in
pp Collisions at

p
s = 8 TeV

The CMS Collaboration

Abstract

We present a measurement of the cross section ratio s(tt̄bb̄)/s(tt̄jj) in the dilep-
ton decay mode, using a data sample corresponding to an integrated luminosity of
19.6 fb�1 collected in pp collisions at

p
s = 8 TeV with the CMS detector at the LHC.

The cross section ratio s(tt̄bb̄)/s(tt̄jj) is measured in the visible phase space corre-
sponding to the detector acceptance, and corrected to particle level. For events with
at least four reconstructed jets, the measurement is performed by means of a fit to
the measured b-tagging algorithm discriminator. The result of the measurement is
0.023 ± 0.003(stat.) ± 0.005(syst.) and 0.022 ± 0.004(stat.) ± 0.005(syst.) for a mini-
mum pT of 20 and 40 GeV/c, respectively. Measurements of the absolute cross sec-
tions s(tt̄bb̄) and s(tt̄jj) are also presented.

in dilepton decay mode
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Abstract

We present a measurement of the cross section ratio s(tt̄bb̄)/s(tt̄jj) in the dilep-
ton decay mode, using a data sample corresponding to an integrated luminosity of
19.6 fb�1 collected in pp collisions at

p
s = 8 TeV with the CMS detector at the LHC.

The cross section ratio s(tt̄bb̄)/s(tt̄jj) is measured in the visible phase space corre-
sponding to the detector acceptance, and corrected to particle level. For events with
at least four reconstructed jets, the measurement is performed by means of a fit to
the measured b-tagging algorithm discriminator. The result of the measurement is
0.023 ± 0.003(stat.) ± 0.005(syst.) and 0.022 ± 0.004(stat.) ± 0.005(syst.) for a mini-
mum pT of 20 and 40 GeV/c, respectively. Measurements of the absolute cross sec-
tions s(tt̄bb̄) and s(tt̄jj) are also presented.

19.2±0.8  20.4±1.8  61.3±3.5  101±4

in dilepton decay mode
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ttH signal on ttbb background

− −   Distribution of the invariant mass of the hardest bb jet pair 
in pp → tt H and tt bb at LHC (14 TeV)
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Conclusions and outlook
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First computation of pp → ttbb at NLO + SMC accuracy 
[A. Kardos and Z.T. arXiv:1303.6291,                          
Cascioli et al arXiv:1309.5912, Meierhofer this morning] 

NLO cross sections agree with published predictions 
and with CMS results 

Effects of decay of t-quarks could be important 

LHE event files for pp →  tt, ttH, ttW, ttZ, ttjet, ttbb 
processes available, to put into SMC and perform 
experimental analyses on events with hadrons

Conclusions

− −

− − − − − − −
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Processes available in PowHel

✓tT 
✓tT + Z 
✓tT + W 
✓tT + H/A 
✓tT + j 
✓WWbB 
✓tT + bB 

[Kardos et al, arXiv: 
1111.0610,1111.1444, 
1208.2665,  
1108.0387,  
1101.2672, 
PoS LL2012 057 
1103.6291]
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Processes available in PowHel

✓tT 
✓tT + Z 
✓tT + W 
✓tT + H/A 
✓tT + j 
✓WWbB 
✓tT + bB 
✓tT +… (2 more processes coming soon)

The end

[Kardos et al, arXiv: 
1111.0610,1111.1444, 
1208.2665,  
1108.0387,  
1101.2672, 
PoS LL2012 057 
1103.6291]
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Selection cuts in NLO studies

Cuts employed by Bevilacqua et al in arXiv:0907.4723 

‣ A track was considered as a possible jet 
constituent if |ηtrack|<5, t-quarks were excluded 
from the set of possible tracks, jets were 
reconstructed with the kT-algorithm using R=0.4 

‣ Events with invariant mass of the bb-jet pair below 
mminbb = 20 GeV were discarded 

‣ We require pTmin,j = 20 GeV and 

‣ at least two, one b- and one b-jet, with |yb(b)|<2.5 

−

−−

−
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Comparison to Bevilacqua et al: 0907.4723
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Selection cuts for decay vs. SMC

‣ Applied on the LHE’s: 
‣ A track was considered as a possible jet 

constituent if |ηtrack|<5, t-quarks were excluded 
from the set of possible tracks. Jets were 
reconstructed with the anti-kT algorithm using 
R=0.4. 

‣ Events with invariant mass of the bb-jet pair below 
mminbb = 100 GeV were discarded. 

‣ Applied on LHE’s and checked also on the existing 
particles at different stages of evolution: 

‣ we require pTmin,j = 25 GeV and 

‣ at least two, one b- & one b-jet with |ηb(b)|<2.5.

−

− −

−
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Comparison to CMS PAS TOP-13-010

‣ at least one pair of isolated (with R=0.3, Irel = 0.15) 
opposite sign leptons with pTmin,l = 20 GeV/c, |ηl|<2.4,    
12 GeV < mllc2  (∉[77, 107] GeV if ee or µµ) 

‣ pTmiss = 30 GeV/c if ee or µµ 

‣ jets reconstructed with the anti-kT algorithm using 
R=0.4, with pTmin,j = 20 (40) GeV and |ηj|<2.5 

‣ at least four well separated jets with ΔR > 0.5 
both from leptons and jets 
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Abstract

We present a measurement of the cross section ratio s(tt̄bb̄)/s(tt̄jj) in the dilep-
ton decay mode, using a data sample corresponding to an integrated luminosity of
19.6 fb�1 collected in pp collisions at

p
s = 8 TeV with the CMS detector at the LHC.

The cross section ratio s(tt̄bb̄)/s(tt̄jj) is measured in the visible phase space corre-
sponding to the detector acceptance, and corrected to particle level. For events with
at least four reconstructed jets, the measurement is performed by means of a fit to
the measured b-tagging algorithm discriminator. The result of the measurement is
0.023 ± 0.003(stat.) ± 0.005(syst.) and 0.022 ± 0.004(stat.) ± 0.005(syst.) for a mini-
mum pT of 20 and 40 GeV/c, respectively. Measurements of the absolute cross sec-
tions s(tt̄bb̄) and s(tt̄jj) are also presented.

5

Table 1: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 18.1 ± 0.8 26.8 ± 1.0 60.9 ± 1.5 105
tt̄ + b 34.3 ± 1.1 51.4 ± 1.4 111 196
tt̄ + cc̄ 13.4 ± 0.9 20.5 ± 1.0 47.0 ± 1.6 80.9 ± 2.4
tt̄ + LF 244 359 822 1,425

tt̄ others 20.5 ± 1.1 25.6 ± 1.1 63.7 ± 1.9 109
multijet < 0.1 1.4 ± 1.2 1.4 ± 1.2 2.9 ± 2.2
W + jets < 0.1 < 0.1 < 0.1 < 0.1

VV < 0.1 0.3 ± 0.1 < 0.1 0.4 ± 0.7
Single top-tW 7.9 ± 2.0 11.6 ± 2.5 25.1 ± 3.7 44.7 ± 4.1

Z/g⇤ ! ll 5.6 ± 4.3 5.7 ± 3.9 2.9 ± 3.2 14.4 ± 5.7
Total expected 351 512 1,159 2,023

Data 367 506 1,145 2,018

Table 2: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 4.0 ± 0.4 5.9 ± 0.5 13.3 ± 0.7 23.3 ± 1.5
tt̄ + b 13.6 ± 0.7 16.8 ± 0.8 37.9 ± 1.1 68.2 ± 2.1
tt̄ + cc̄ 3.1 ± 0.4 4.6 ± 0.5 9.5 ± 0.7 17.3 ± 1.6
tt̄ + LF 62.2 ± 2.0 94.1 ± 2.3 211 ± 3.6 368

tt̄ others 9.5 ± 0.8 11.8 ± 0.8 28.3 ± 1.3 49.7 ± 2.2
multijet < 0.1 0.3 ± 0.6 0.3 ± 0.6 0.7 ± 1.6
W + jets < 0.1 < 0.1 < 0.1 < 0.1

VV < 0.1 < 0.1 < 0.1 < 0.1
Single top-tW 2.8 ± 1.24 2.7 ± 1.2 4.4 ± 1.7 9.9 ± 2.7

Z/g⇤ ! ll 2.2 ± 3.02 < 0.1 2.9 ± 3.2 5.2 ± 3.9
Total expected 100 139 315 555

Data 90 148 311 549

5 Cross section ratio measurement

After the final selection, most of the events, around 97% are from tt events which contain at
least 2 b-quarks predicted in the top quarks pair decay. The final selection includes at least two
b-tagged jets. We used the third and fourth highest CSV discriminator jets to separate tt̄bb̄ from
other processes according to its heavy flavor content. The purity of identifying b-jets from top
decay in tt̄LF process by selecting the two highest CSV discriminator jets is found to be around
90%.

The fraction of tt̄bb̄ events with respect to tt̄jj events was obtained from data by fitting to the
CSV b-tagging discriminator. Figure 2 shows the normalized distribution of the CSV b-tagging

in dilepton decay mode
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at least four reconstructed jets, the measurement is performed by means of a fit to
the measured b-tagging algorithm discriminator. The result of the measurement is
0.023 ± 0.003(stat.) ± 0.005(syst.) and 0.022 ± 0.004(stat.) ± 0.005(syst.) for a mini-
mum pT of 20 and 40 GeV/c, respectively. Measurements of the absolute cross sec-
tions s(tt̄bb̄) and s(tt̄jj) are also presented.
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Table 1: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 18.1 ± 0.8 26.8 ± 1.0 60.9 ± 1.5 105
tt̄ + b 34.3 ± 1.1 51.4 ± 1.4 111 196
tt̄ + cc̄ 13.4 ± 0.9 20.5 ± 1.0 47.0 ± 1.6 80.9 ± 2.4
tt̄ + LF 244 359 822 1,425

tt̄ others 20.5 ± 1.1 25.6 ± 1.1 63.7 ± 1.9 109
multijet < 0.1 1.4 ± 1.2 1.4 ± 1.2 2.9 ± 2.2
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Z/g⇤ ! ll 5.6 ± 4.3 5.7 ± 3.9 2.9 ± 3.2 14.4 ± 5.7
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Table 2: Expected and observed counts of events after the final event selection and with particle
level jet pT of at least 20 GeV/c, summed over ee/µµ/eµ final states. Only statistical uncertain-
ties are given in Table.

Final state ee µµ eµ All
tt̄ + bb̄ 4.0 ± 0.4 5.9 ± 0.5 13.3 ± 0.7 23.3 ± 1.5
tt̄ + b 13.6 ± 0.7 16.8 ± 0.8 37.9 ± 1.1 68.2 ± 2.1
tt̄ + cc̄ 3.1 ± 0.4 4.6 ± 0.5 9.5 ± 0.7 17.3 ± 1.6
tt̄ + LF 62.2 ± 2.0 94.1 ± 2.3 211 ± 3.6 368

tt̄ others 9.5 ± 0.8 11.8 ± 0.8 28.3 ± 1.3 49.7 ± 2.2
multijet < 0.1 0.3 ± 0.6 0.3 ± 0.6 0.7 ± 1.6
W + jets < 0.1 < 0.1 < 0.1 < 0.1

VV < 0.1 < 0.1 < 0.1 < 0.1
Single top-tW 2.8 ± 1.24 2.7 ± 1.2 4.4 ± 1.7 9.9 ± 2.7

Z/g⇤ ! ll 2.2 ± 3.02 < 0.1 2.9 ± 3.2 5.2 ± 3.9
Total expected 100 139 315 555

Data 90 148 311 549

5 Cross section ratio measurement

After the final selection, most of the events, around 97% are from tt events which contain at
least 2 b-quarks predicted in the top quarks pair decay. The final selection includes at least two
b-tagged jets. We used the third and fourth highest CSV discriminator jets to separate tt̄bb̄ from
other processes according to its heavy flavor content. The purity of identifying b-jets from top
decay in tt̄LF process by selecting the two highest CSV discriminator jets is found to be around
90%.

The fraction of tt̄bb̄ events with respect to tt̄jj events was obtained from data by fitting to the
CSV b-tagging discriminator. Figure 2 shows the normalized distribution of the CSV b-tagging

4.1±0.2  4.3±0.3  12.3±0.3  20.7±0.5

in dilepton decay mode
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Cuts for background study for tTH

Applied after full SMC 
‣ a track was considered as a possible jet constituent if 

|ηtrack|<5, jets were reconstructed with the anti-kT 
algorithm using R=0.4 

we require 

‣ at least six jets with pTmin,j = 20 GeV and |ηj|<5 

‣ at least two b-jets & two b-jets with |ηb(b)|<2.7, 
with MCTRUTH tagging 

‣ at least one isolated (with R=0.4) lepton with pTmin,l 
= 20 GeV and |ηl|<2.5 

‣ pTmiss = 15 GeV 
to disentangle background in the semileptonic tt decay

− −

−
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ttH signal on ttbb background−−−
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