New results for precision Higgs Physics

Zoltán Trócsányi

UP

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with A. Kardos, M.V. Garzelli

Loops and Legs in Quantum Field Theory, Weimar April 29, 2014

Precision tools for Higgs Physics with PowHel

Zoltán Trócsányi

UP

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with A. Kardos, M.V. Garzelli

Loops and Legs in Quantum Field Theory, Weimar April 29, 2014

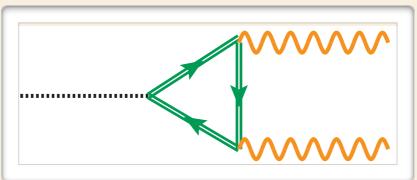
Outline

- Motivation
- Method
- Predictions
- Conclusions and Plans

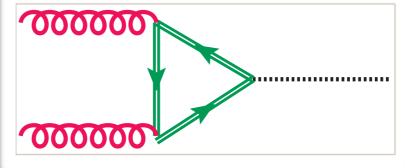
Higgs boson discovered at the LHC

 ◎ m_H [GeV]=125.5±0.2_{stat}±0.6_{syst} (ATLAS 2013) 125.7±0.3_{stat}±0.3_{syst} (CMS 2013)

- All measured properties are consistent with SM expectations within experimental uncertainties
 - branching ratios as predicted
 - spin zero
 - parity +
 - couples to masses of W and Z (with c_v=1 within experimental uncertainty)


t-quark: potential tool for discovery

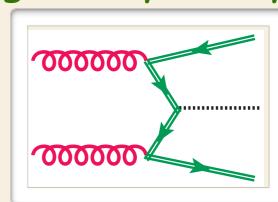
• The t-quark is heavy, Yukawa coupling ~1 m_t [GeV]=173.34±0.64 (LHC+TeVatron, 2014) (\Rightarrow y_t=0.997±0.003)


 ⇒ plays important role in Higgs physics (more tantalizing: mt mz = (125.7±0.3)² GeV²)
 yt cannot be measured in H → tT decay (mt > mH)

How to measure y_t ?

- ${}^{\odot}$ H ${}^{\rightarrow}$ yy is sensitive to y_t through t-quark loop,
 - but rates are small and W loop also contributes

- \bigcirc gg \rightarrow H is sensitive to y_t through t-quark loop
 - if only SM model particles contribute (so far xsec is consistent with SM)

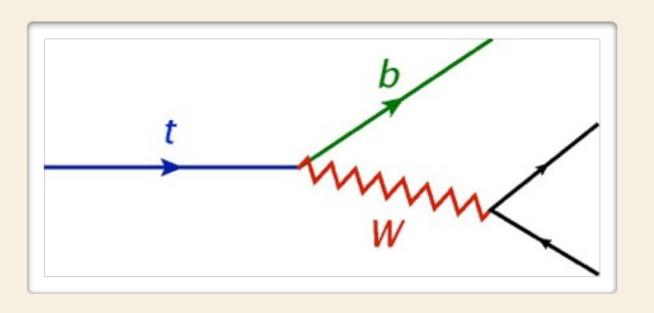


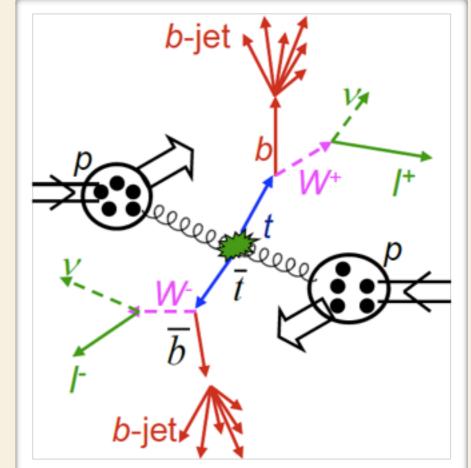
- \odot gg \rightarrow H is sensitive to BSM physics
 - if yt is measured separately

tTH hadroproduction

• y_{\dagger} can be measured in pp \rightarrow \dagger TH through many decay channels (all very difficult):

- hadrons with single lepton: $t \to b\ell\nu, \bar{t} \to \bar{b}jj, H \to b\bar{b}$
- hadrons with dilepton: $t \to b\ell\nu, \bar{t} \to \bar{b}\ell\nu, H \to b\bar{b}$
- hadrons with hadronic tau: $t \to b \ell \nu, \bar{t} \to \bar{b} j j, H \to \tau_h^+ \tau_h^-$
- diphoton with lepton:
- o diphoton with hadrons:
- same sign dilepton:
- 3 leptons with di, trilepton: $t \to b\ell\nu$, $\bar{t} \to \bar{b}jj$, $H \to \ell[\nu]\ell[\nu]$
- 4 lepton with di, trilepton: $t \to b\ell\nu, \bar{t} \to \bar{b}\ell[\nu], H \to \ell[\nu]\ell[\nu]$


 $t \to b \ jj, \ \overline{t} \to \overline{b}jj, \ H \to \gamma\gamma$ $t \to b \ jj, \ \overline{t} \to \overline{b}jj, \ H \to \ell\nu\ell[\nu]$


 $t \to b\ell\nu, \bar{t} \to \bar{b}jj, H \to \gamma\gamma$

The importance of being top

These require precise predictions of distributions at hadron level for pp →tT+hard X, X = H,W,Z,Y,j,bB,2j...

...with decays: the t-quark is not detected because it decays before hadronization $|V_{tb}|^2 \gg |V_{ts}|^2, |V_{td}|^2$

...to distributions, full of pitfalls & difficulties

There is a long way from loops and legs...

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

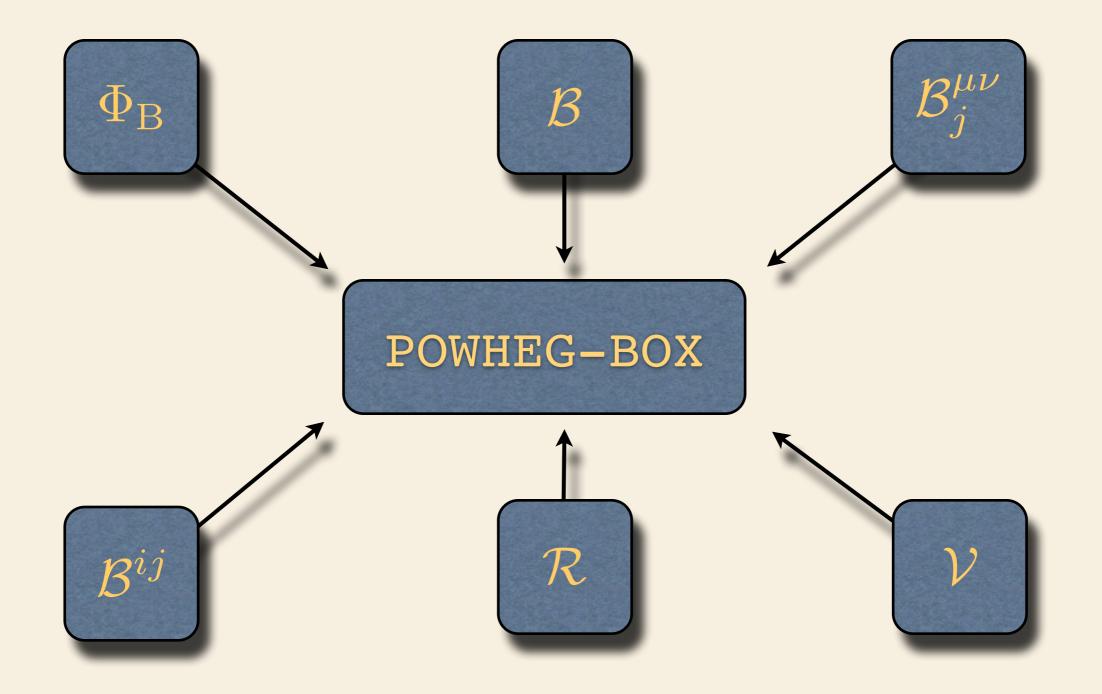
$$d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \left[\Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \underbrace{\frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC}}_{R_{\rm rad}} \right]$$
$$= \lim_{k_\perp \to 0} R(\Phi_{n+1}) / B(\Phi_n)$$

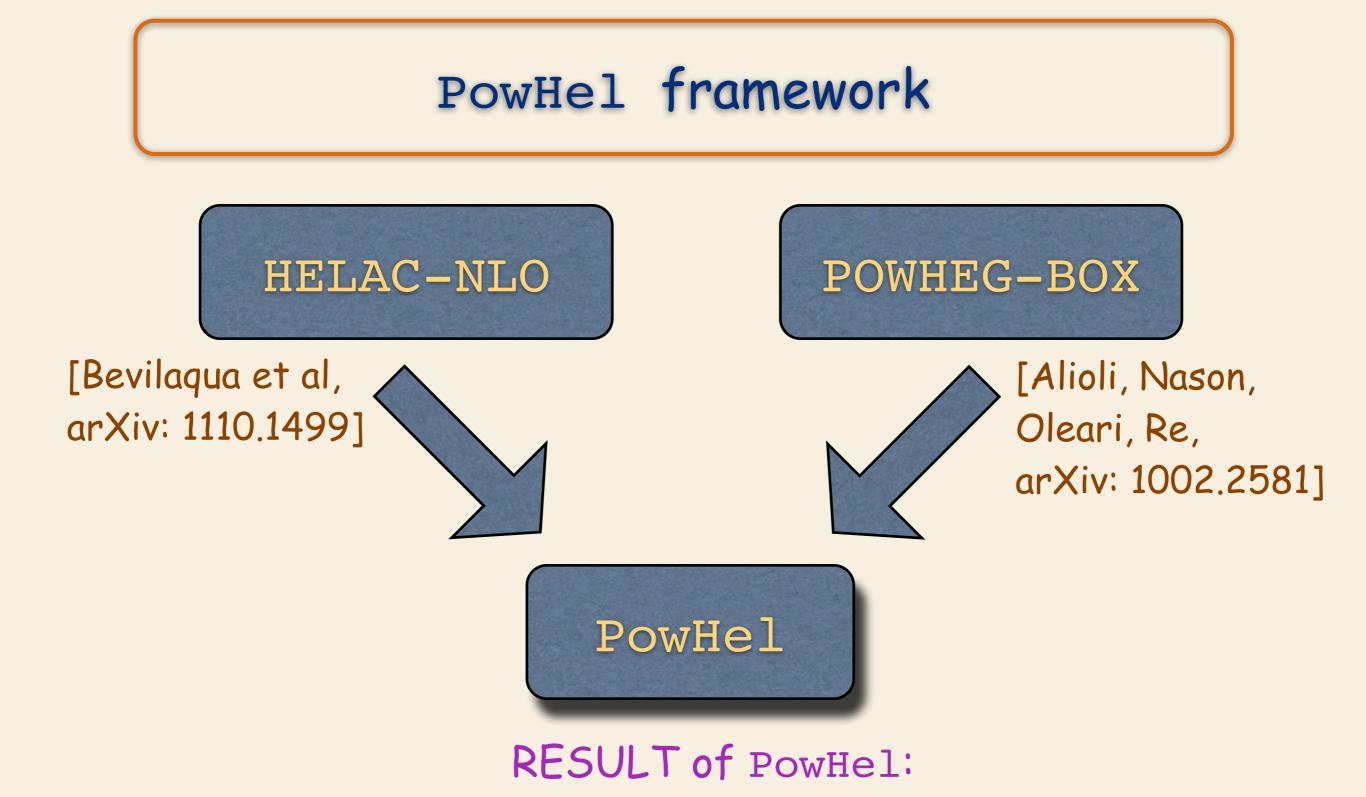
SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

$$d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \left[\Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC} \right]$$
$$= \lim_{k_\perp \to 0} R(\Phi_{n+1}) / B(\Phi_n)$$
$$= \text{POWHEG MC first emission:}$$

$$d\sigma = \bar{B}(\Phi_n) d\Phi_n \left[\Delta(\Phi_n, p_{\perp}^{\min}) + \Delta(\Phi_n, k_{\perp}) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Theta(k_{\perp} - p_{\perp}^{\min}) d\Phi_{\mathrm{rad}} \right]$$
$$\bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_{n+1}) - A(\Phi_{n+1}) \right] d\Phi_{\mathrm{rad}}$$


11


[Frixione, Nason, Oleari arXiv: 0709.2092]

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

POWHEG-BOX framework

Les Houches file of Born and Born+1st radiation events (LHE) ready for processing with SMC followed by almost arbitrary experimental analysis

- Hadrons in final state
- •Closer to experiments, realistic analysis becomes feasible

- Hadrons in final state
- •Closer to experiments, realistic analysis becomes feasible
- Decayed tops
- Parton shower can have significant effect
 (e.g. in Sudakov regions)

- Hadrons in final state
- •Closer to experiments, realistic analysis becomes feasible
- Decayed tops
- Parton shower can have significant effect
- (e.g. in Sudakov regions)
- For the user:

event generation is, faster than an NLO computation (once the code is ready!)

- Hadrons in final state
- •Closer to experiments, realistic analysis becomes feasible
- Decayed tops
- Parton shower can have significant effect
- (e.g. in Sudakov regions)
- •For the user:

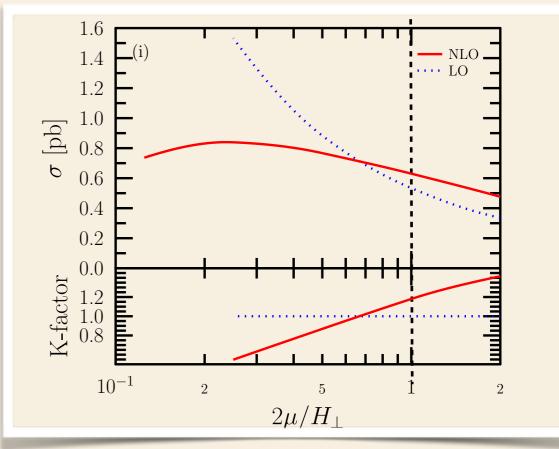
event generation is, faster than an NLO computation (once the code is ready!) ...but we deliver the events on request

tTbB production

- QCD corrections are
 - large with scales $\mu_0 = m_t$ or $m_t + m_{b\bar{b}}/2$ (about 80%)
 - moderate with dynamical scale µ0=(m+² pT,bpT,b)^{1/4} (about 25%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence by emulating higher order effects through CKKWtype scale choice

- QCD corrections are
 - large with scales $\mu_{fix} = m_t$ or $m_t + m_{bb}/2$ (about 70%)
 - moderate with dynamical scale µ_{dyn}= (m_t² p_{T,b}p_{T,b})^{1/4} (about 25%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence by emulating higher order effects through CKKWtype scale choice,

but

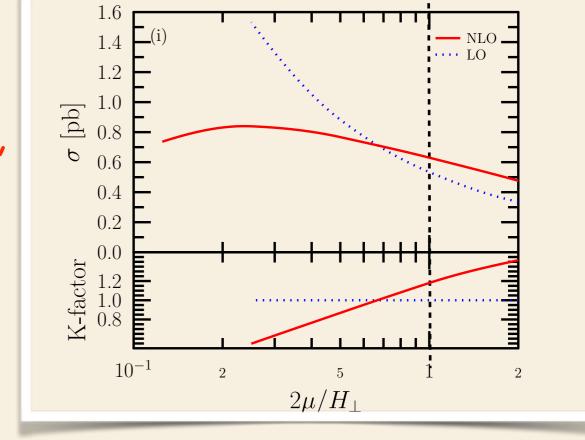

• we simulate higher order effects through the PS: μ_{dyn} is too small near threshold where cross section is largest, even for a b with $p_T = 100 \text{ GeV}$ and another b with $p_T = 20 \text{ GeV} \ \mu_{dyn} = 90 \text{ GeV} \ll m_t$ resulting in an artificially large xsection at LO

We use the dynamical scale μ_{dyn} = H_T/2, where H_T is the scalar sum of transverse masses of final-state particles that is a good scale also near threshold

We use the dynamical scale μ_{dyn} = H_T/2, where H_T is the scalar sum of transverse masses of final-state particles that is a good scale also near threshold

With this scale

✓ the K factor is even smaller, implying good convergence

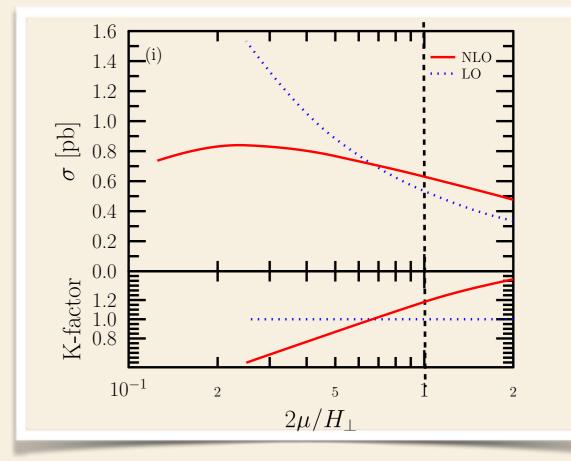


We use the dynamical scale μ_{dyn} = H_T/2, where H_T is the scalar sum of transverse masses of final-state particles that is a good scale also near threshold

With this scale
✓ the K factor is even smaller, implying good convergence

 \checkmark the cross sections are

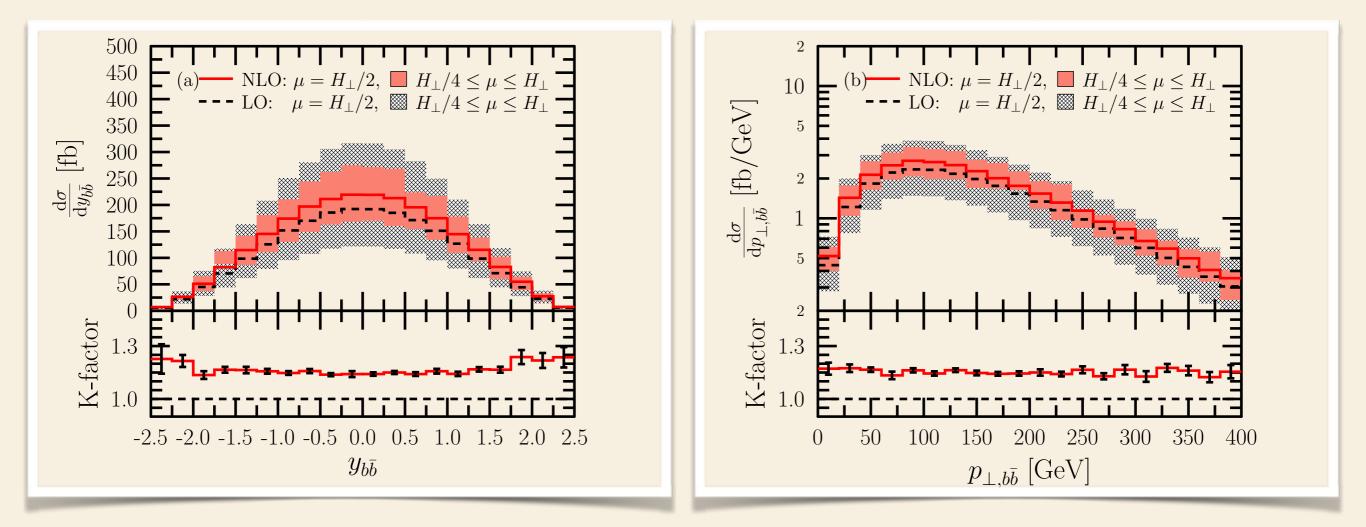
smaller (with BDDP cuts):

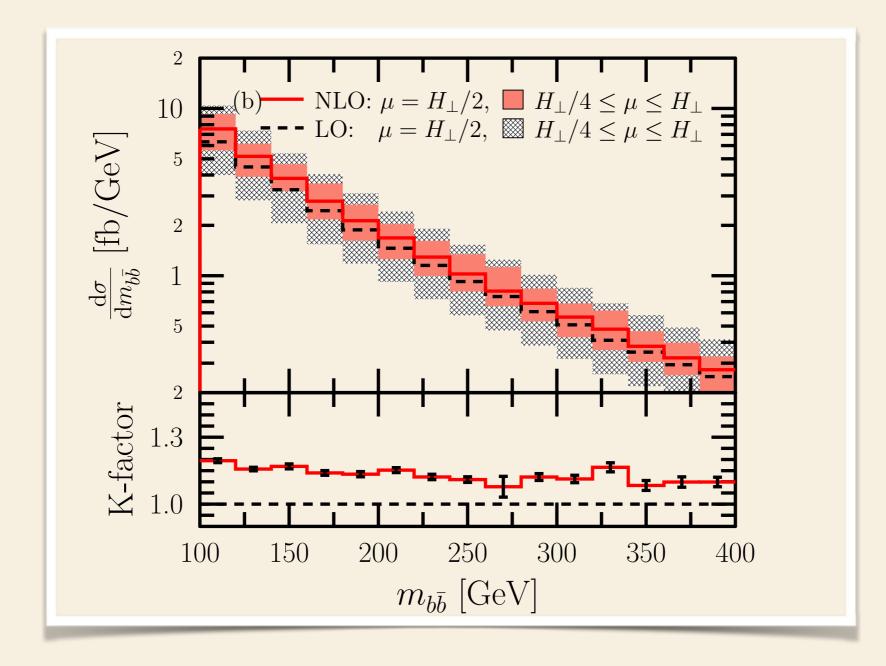

 $\sigma_{LO} = 534 \text{ fb}, \sigma_{NLO} = 630 \text{ fb}, K = 1.18$

We use the dynamical scale μ_{dyn} = H_T/2, where H_T is the scalar sum of transverse masses of final-state particles that is a good scale also near threshold

With this scale
✓ the K factor is even smaller, implying good convergence

 \checkmark the cross sections are

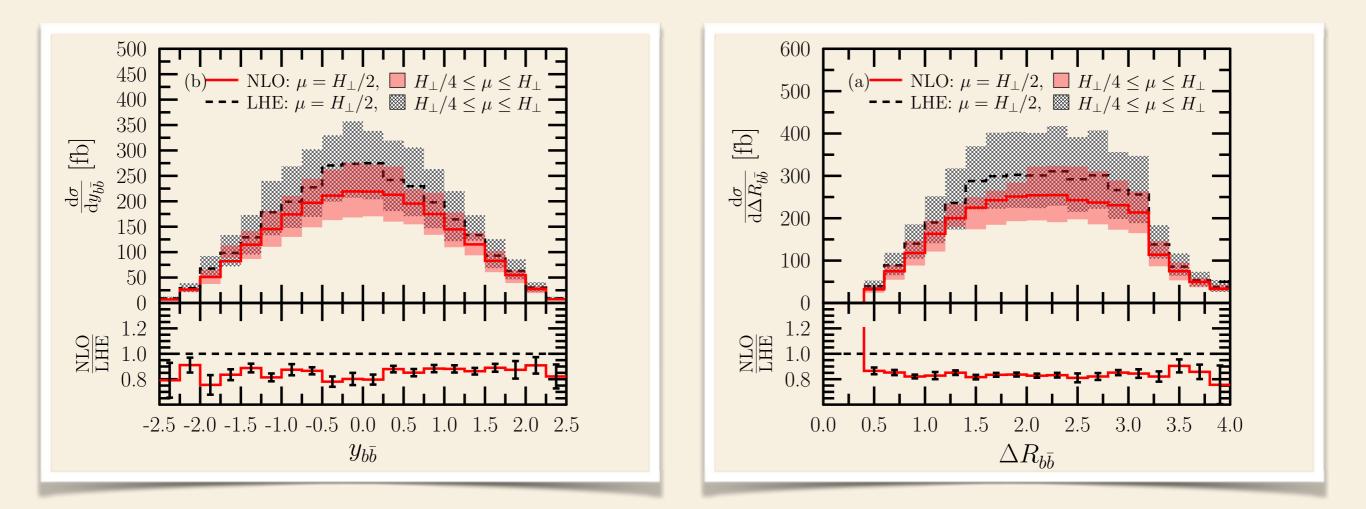

smaller (with BDDP cuts):


 $\sigma_{LO} = 534 \text{ fb}, \sigma_{NLO} = 630 \text{ fb}, K = 1.18$

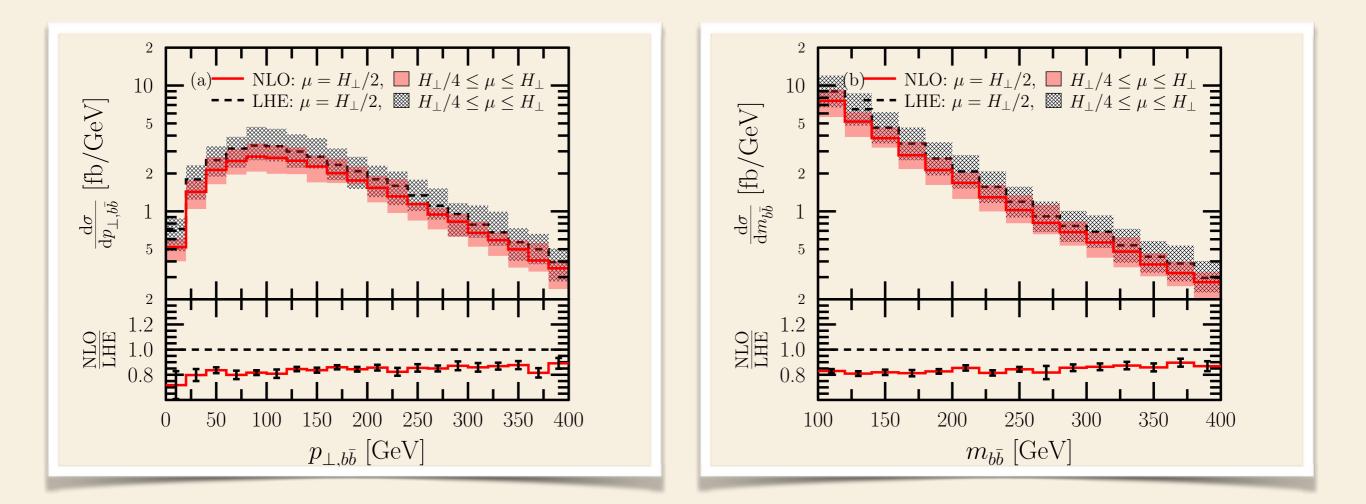
scale dependence: +32%-22%, largest if $\mu_R = \mu_F = \mu_{dyn}$

Small changes in shapes of distributions

Small changes in shapes of distributions



Formal accuracy of the POWHEG MC


$$\langle O \rangle = \int \mathrm{d}\Phi_{\mathrm{B}} \widetilde{B} \left[\Delta(p_{\perp,\mathrm{min}}) O(\Phi_{\mathrm{B}}) + \int \mathrm{d}\Phi_{\mathrm{rad}} \Delta(p_{\perp}) \frac{R}{B} O(\Phi_{\mathrm{R}}) \right] =$$

...

LHE vs. NLO

LHE vs. NLO

Message: we can trust the LHE's, so can make

Four possible forms of predictions

LHE: distributions from events at BORN+1st radiation

Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included (t-quarks kept stable)

Four possible forms of predictions

LHE: distributions from events at BORN+1st radiation

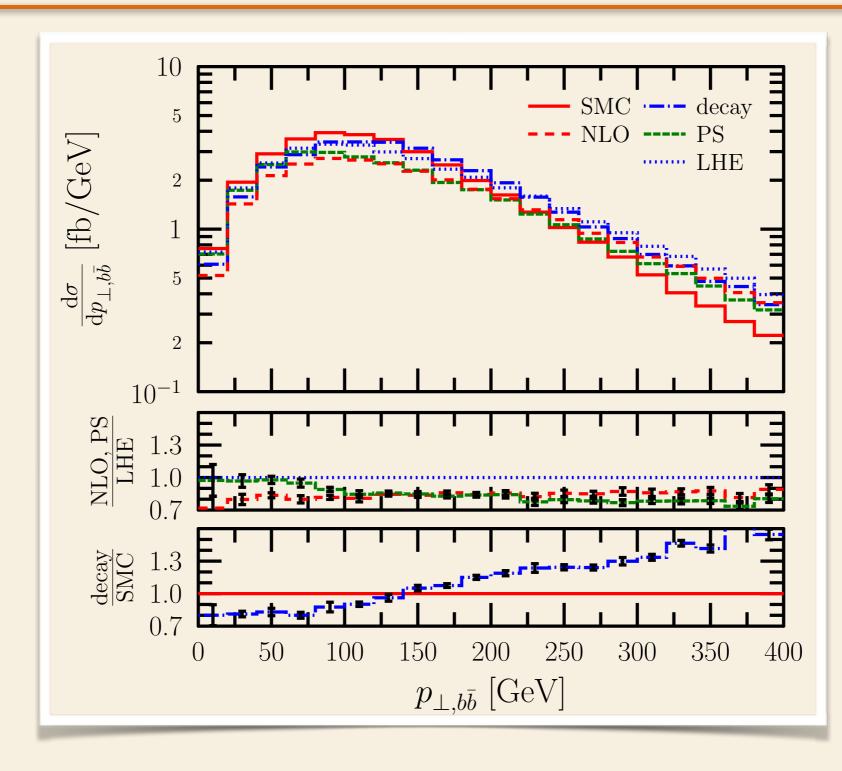
Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included (t-quarks kept stable)

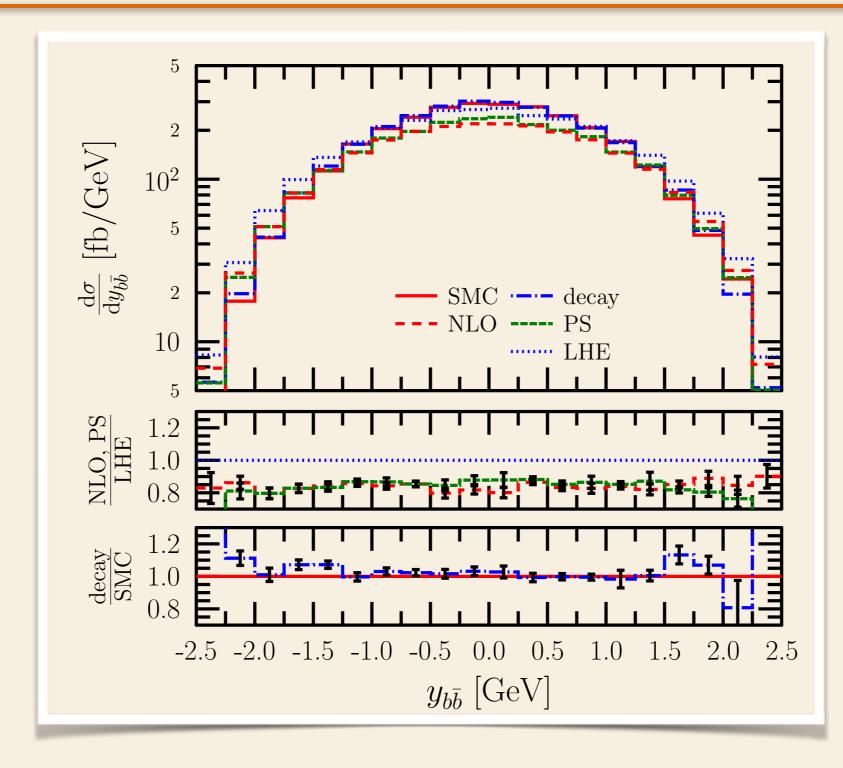
Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Four possible forms of predictions

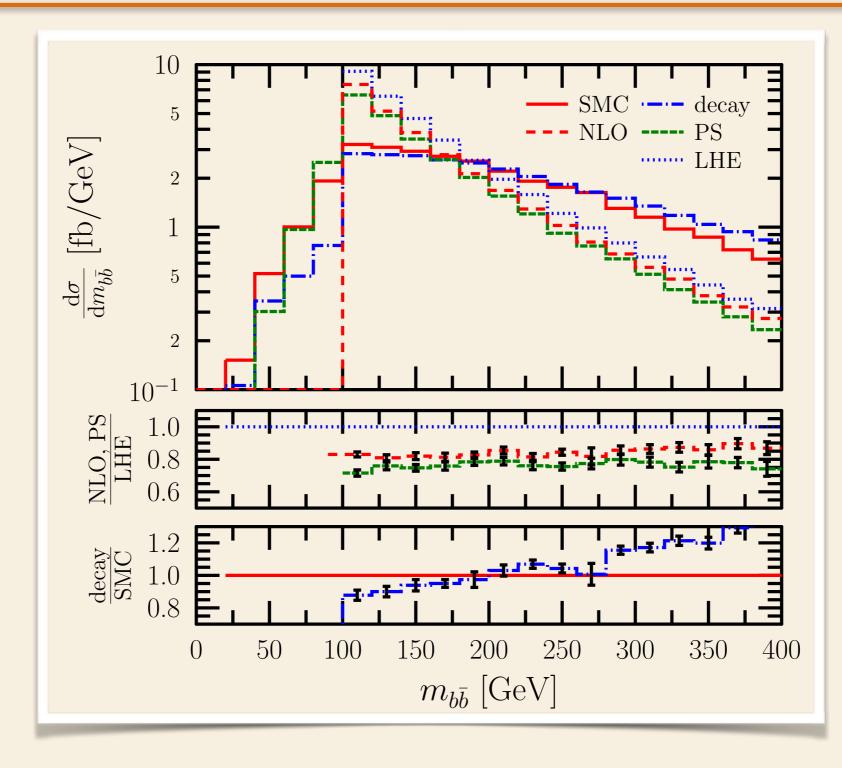
LHE: distributions from events at BORN+1st radiation


Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included (t-quarks kept stable)


Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Number and type of particles are very different => to study the effect of SMC we employ selection cuts to keep the cross section fixed


NLO vs. PS and decay vs. full SMC at 14TeV, $\mu = H_T/2$

NLO vs. PS and decay vs. full SMC at 14TeV, $\mu = H_T/2$

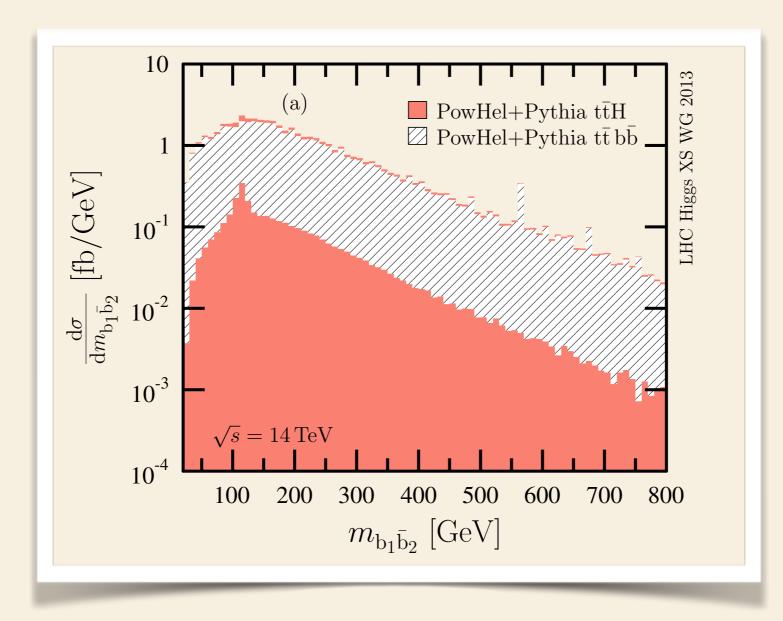
NLO vs. PS and decay vs. full SMC at 14TeV, $\mu = H_T/2$

Measurement of the Cross Section Ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ in pp Collisions at $\sqrt{s} = 8$ TeV

in dilepton decay mode

The CMS Collaboration

Final state	ee	μμ	еµ	All
$t\overline{t} + b\overline{b}$	18.1 ± 0.8	26.8 ± 1.0	60.9 ± 1.5	105
$t\overline{t}+b$	34.3 ± 1.1	51.4 ± 1.4	111	196
$t\bar{t}+c\bar{c}$	13.4 ± 0.9	20.5 ± 1.0	47.0 ± 1.6	80.9 ± 2.4
$t\overline{t} + LF$	244	359	822	1,425
$t\bar{t}$ others	20.5 ± 1.1	25.6 ± 1.1	63.7 ± 1.9	109
multijet	< 0.1	1.4 ± 1.2	1.4 ± 1.2	2.9 ± 2.2
W + jets	< 0.1	< 0.1	< 0.1	< 0.1
VV	< 0.1	0.3 ± 0.1	< 0.1	0.4 ± 0.7
Single top-tW	7.9 ± 2.0	11.6 ± 2.5	25.1 ± 3.7	44.7 ± 4.1
$Z/\gamma * \rightarrow ll$	5.6 ± 4.3	5.7 ± 3.9	2.9 ± 3.2	14.4 ± 5.7
Total expected	351	512	1,159	2,023
Data	367	506	1,145	2,018


Measurement of the Cross Section Ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ in pp Collisions at $\sqrt{s} = 8$ TeV

in dilepton decay mode

The CMS Collaboration

Final state	ee	μμ	еµ	All
$t\overline{t} + b\overline{b}$	18.1 ± 0.8	26.8 ± 1.0	60.9 ± 1.5	105
	9.2±0.8	20.4±1.8	61.3±3	.5 101±4
$t\overline{t} + LF$	244	359	822	1,425
$t\bar{t}$ others	20.5 ± 1.1	25.6 ± 1.1	63.7 ± 1.9	109
multijet	< 0.1	1.4 ± 1.2	1.4 ± 1.2	2.9 ± 2.2
W + jets	< 0.1	< 0.1	< 0.1	< 0.1
VV	< 0.1	0.3 ± 0.1	< 0.1	0.4 ± 0.7
Single top-tW	7.9 ± 2.0	11.6 ± 2.5	25.1 ± 3.7	44.7 ± 4.1
$Z/\gamma * \rightarrow ll$	5.6 ± 4.3	5.7 ± 3.9	2.9 ± 3.2	14.4 ± 5.7
Total expected	351	512	1,159	2,023
Data	367	506	1,145	2,018

ttH signal on ttbb background

Distribution of the invariant mass of the hardest $b\overline{b}$ jet pair in pp \rightarrow tt H and tt bb at LHC (14 TeV)

Conclusions and outlook

Conclusions

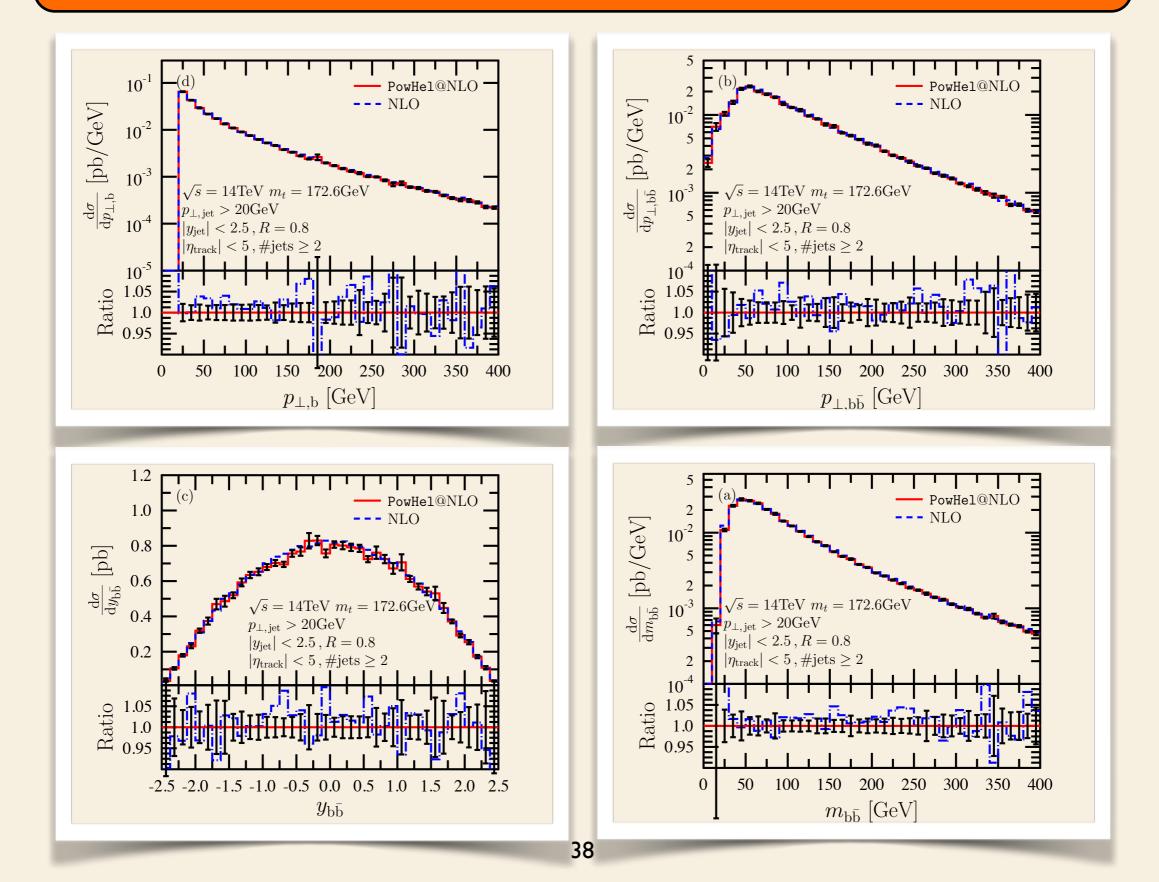
- First computation of pp → ttbb at NLO + SMC accuracy
 [A. Kardos and Z.T. arXiv:1303.6291,
 Cascioli et al arXiv:1309.5912, Meierhofer this morning]
- NLO cross sections agree with published predictions and with CMS results
- Effects of decay of t-quarks could be important
- LHE event files for pp → tT, tTH, tTW, tTZ, tTjet, tTbb processes available, to put into SMC and perform experimental analyses on events with hadrons

Processes available in PowHel

√ +T [Kardos et al, arXiv: √ +T + Z 1111.0610,1111.1444, √ +T + W 1208.2665, √ +T + H/A 1108.0387, √ +T + j 1101.2672, √ WWbB PoS LL2012 057 √ +T + bB 1103.6291]

Processes available in PowHel

[Kardos et al, arXiv: **√**†T 1111.0610,1111.1444, $\sqrt{T + Z}$ $\sqrt{T + W}$ 1208.2665, 1108.0387, $\sqrt{T + H/A}$ àT + j 1101.2672, **√**WWbB PoS LL2012 057 1103.6291] $\sqrt{T} + bB$ \sqrt{T} +... (2 more processes coming soon)


The end

Cuts employed by Bevilacqua et al in arXiv:0907.4723

- A track was considered as a possible jet constituent if |n^{track}|<5, t-quarks were excluded from the set of possible tracks, jets were reconstructed with the k_T-algorithm using R=0.4
- Events with invariant mass of the $b\bar{b}$ -jet pair below $m^{min}_{b\bar{b}} = 20 \text{ GeV}$ were discarded
- ► We require p_{Tmin,j} = 20 GeV and
- at least two, one b- and one \overline{b} -jet, with $|y_{b(\overline{b})}| < 2.5$

Comparison to Bevilacqua et al: 0907.4723

Selection cuts for decay vs. SMC

- Applied on the LHE's:
 - A track was considered as a possible jet constituent if |n^{track}|<5, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-k_T algorithm using R=0.4.
 - Events with invariant mass of the $b\overline{b}$ -jet pair below $m^{min}b\overline{b} = 100 \text{ GeV}$ were discarded.
- Applied on LHE's and checked also on the existing particles at different stages of evolution:
 - ▶ we require p_{Tmin,j} = 25 GeV and
 - at least two, one b- & one b-jet with $|\eta_{b(\overline{b})}| < 2.5$.

- at least one pair of isolated (with R=0.3, $I_{rel} = 0.15$) opposite sign leptons with $p_{Tmin,\ell} = 20 \text{ GeV/c}$, $|\eta_{\ell}| < 2.4$, $12 \text{ GeV} < m_{\ell\ell}c^2$ (\notin [77, 107] GeV if ee or $\mu\mu$)
- $p_T^{miss} = 30 \text{ GeV/c if ee or } \mu\mu$
- jets reconstructed with the anti- k_T algorithm using R=0.4, with $p_{Tmin,j} = 20$ (40) GeV and $|n_j| < 2.5$
- at least four well separated jets with $\Delta R > 0.5$ both from leptons and jets

Measurement of the Cross Section Ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ in pp Collisions at $\sqrt{s} = 8$ TeV

in dilepton decay mode

The CMS Collaboration

Final state	ее	μμ	еµ	All
$t\overline{t} + b\overline{b}$	4.0 ± 0.4	5.9 ± 0.5	13.3 ± 0.7	23.3 ± 1.5
$t\overline{t}+b$	13.6 ± 0.7	16.8 ± 0.8	37.9 ± 1.1	68.2 ± 2.1
$t\bar{t}+c\bar{c}$	3.1 ± 0.4	4.6 ± 0.5	9.5 ± 0.7	17.3 ± 1.6
$t\overline{t} + LF$	62.2 ± 2.0	94.1 ± 2.3	211 ± 3.6	368
$t\bar{t}$ others	9.5 ± 0.8	11.8 ± 0.8	28.3 ± 1.3	49.7 ± 2.2
multijet	< 0.1	0.3 ± 0.6	0.3 ± 0.6	0.7 ± 1.6
W + jets	< 0.1	< 0.1	< 0.1	< 0.1
VV	< 0.1	< 0.1	< 0.1	< 0.1
Single top-tW	2.8 ± 1.24	2.7 ± 1.2	4.4 ± 1.7	9.9 ± 2.7
$Z/\gamma * ightarrow ll$	2.2 ± 3.02	< 0.1	2.9 ± 3.2	5.2 ± 3.9
Total expected	100	139	315	555
Data	90	148	311	549

Measurement of the Cross Section Ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ in pp Collisions at $\sqrt{s} = 8$ TeV

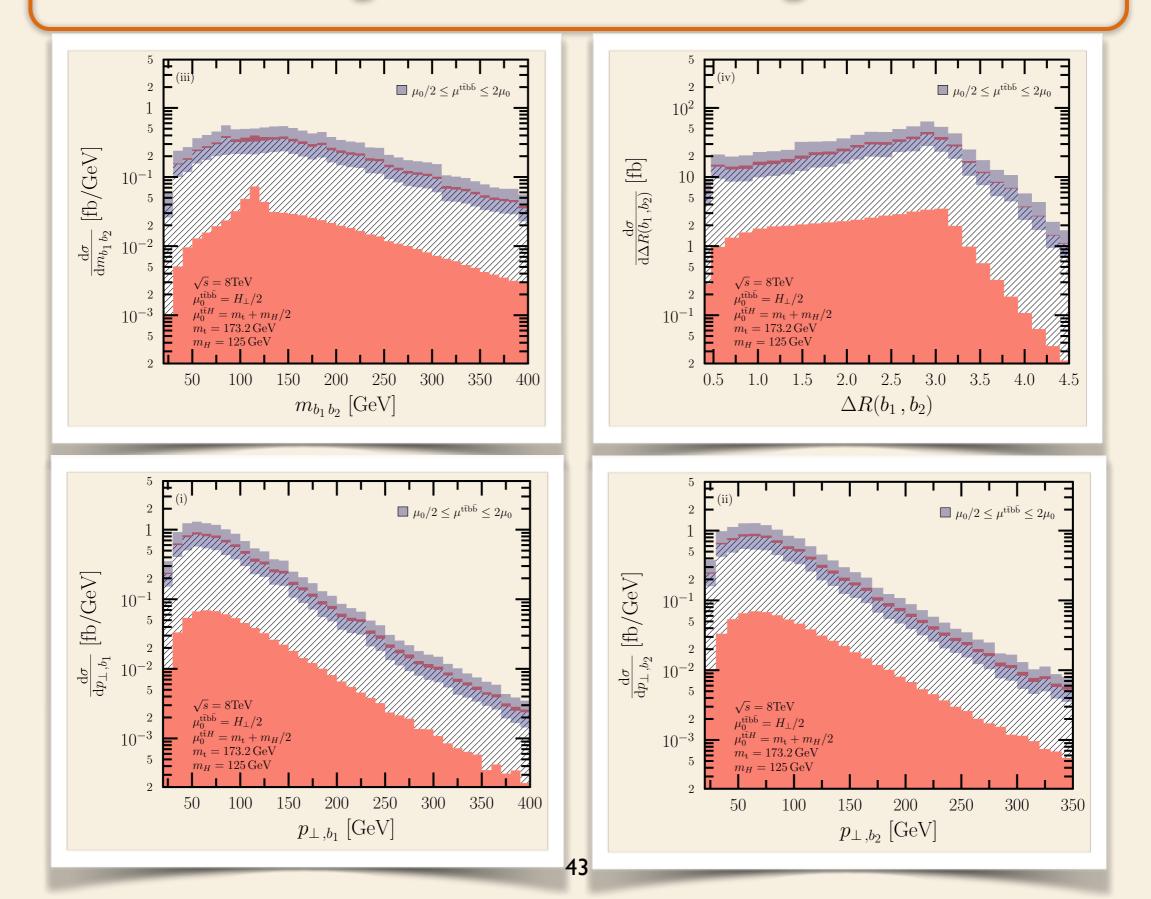
in dilepton decay mode

The CMS Collaboration

Final state	ее	μμ	еµ	All
$t\overline{t}+b\overline{b}$	4.0 ± 0.4	5.9 ± 0.5	13.3 ± 0.7	23.3 ± 1.5
$\frac{t\bar{t}+b}{t\bar{t}+c\bar{c}}$	4.1±0.2 4	4.3±0.3	12.3±0.3	20.7±0.5
$t\overline{t} + LF$	62.2 ± 2.0	94.1 ± 2.3	211 ± 3.6	368
$t\bar{t}$ others	9.5 ± 0.8	11.8 ± 0.8	28.3 ± 1.3	49.7 ± 2.2
multijet	< 0.1	0.3 ± 0.6	0.3 ± 0.6	0.7 ± 1.6
W + jets	< 0.1	< 0.1	< 0.1	< 0.1
VV	< 0.1	< 0.1	< 0.1	< 0.1
Single top-tW	2.8 ± 1.24	2.7 ± 1.2	4.4 ± 1.7	9.9 ± 2.7
$Z/\gamma * \rightarrow ll$	2.2 ± 3.02	< 0.1	2.9 ± 3.2	5.2 ± 3.9
Total expected	100	139	315	555
Data	90	148	311	549

Cuts for background study for tTH

Applied after full SMC


 a track was considered as a possible jet constituent if |n^{track}|<5, jets were reconstructed with the anti-k_T algorithm using R=0.4

we require

- at least six jets with $p_{Tmin,j} = 20 \text{ GeV}$ and $|n_j| < 5$
- at least two b-jets & two b-jets with |nb(b) <2.7, with MCTRUTH tagging
- at least one isolated (with R=0.4) lepton with $p_{Tmin,\ell}$ = 20 GeV and $|\eta_{\ell}| < 2.5$
- $p_T^{miss} = 15 \text{ GeV}$

to disentangle background in the semileptonic $t\overline{t}$ decay

ttH signal on ttbb background

