Combined testbeam: CALICE AHCAL & Beam telescope

- > AHCAL introduction: timing
- > Setup with Beam telescope + results
- > Setup with Mini-TLU + results
- > Plans
- > Conclusion

Jiri Kvasnicka

BTTB 2017, Barcelona jiri.kvasnicka@desy.de

AHCAL introduction

- > A high-granular detector:
 - 3 x 3 x 0.3 cm³ scintillator tiles
 - organized in 36x36 cm boards
 - Layer can reach up to 2m long slab

- > Designed for 1ms spills every 200ms → 0.5% duty cycle!
- > Bunch crossing clock period of 200 ns or 4 us (=> 1 or 16 ms spill)
- > 36-channel ASIC: 16-deep analog memory for up to 16 triggers
 - Each ASIC self-triggered independently (start & stop are the only common events)
 - \rightarrow ASICs can record different particles in different locations
 - Possibility of discarding event not validated by external trigger (only 4 us BX clock)
- > Readout: "Acquisition cycle" oriented (up to 16 ms!)
 - Complete readout cycle from all ASICs (all event mixed)
- Integration challenge to match with EUDET TLU TriggerID
- > Implemented for integration:
 - Timestamps (cycle start+stop) in the data stream => can restore absolute time
 - TLU TriggerID (with timestamp) added to the data stream

Jiri Kvasnicka | BTTB 2017 Barcelona | 25.1..2017 | Page 2

Timing schemes used in testbeams

> Optimally, AHCAL stores 16 events within 16 ms acquisition window

- Used when AHCAL runs alone
- ~200 events/s in this mode (@DESY)
- Event building done offline

> Stop after 1st trigger

- <90 events/s due to readout cycle overhead</p>
- Used with (old) TLU, which tags the trigger with the TriggerID
- Assignment of AHCAL data to TriggerID is straightforward (and safe)

AHCAL + Telescope @DESY 2016

- > Combined data taking of AHCAL, Mimosa beam telescope and (old) TLU
 - October 2016 + December 2016
 - External triggerID from TLU (TtriggerID clocked out from TLU)
 - All devices have independent clocks (!)

> Issues with TLU TriggerID handshake

- TrigID clockout protocol (HW workaround: 50ns filter)
- Triggers come even when AHCAL is busy (treated in software)
- All fixed in the new mini-TLU

> Timing: AHCAL stops after TLU sends trigger

- 20~90 particles/s (depending on beam conditions)
- > Data combined in EUDAQ
 - Smooth integration
 - Events defined by Trigger ID
 - A Complete readout cycle assigned to TriggerID
 - All events numbers synchronized issues fixed
 - Can do a long runs without event number mismatch

X & Y spatial correlations for 5.8 GeV e-

- > Main excersize for AHCAL: get properly synchronized events
- > Semi-online analysis with DQM4HEP
- > Detectors ~2m apart => multiple scattering is an issue
- > We squeezed 5.8 GeV energy out of DESY testbeam to see a reasonable correlation

=> very low rate: can record only ~20 triggers / s

Combined beam test with a beam interface (mini-TLU)

- > BIF = AIDA mini-TLU with custom firmware
 - Receives AHCAL clock (40 MHz)
 - Operates in same readout cycles as AHCAL
 - Triggers outside AHCAL readout cycle ignored
- > Records timestamps from 4 inputs (lemo) + start&stop of acquisition of AHCAL
 - Estimated jitter: 1 ns (measured on 1 MHz DESY beam)
- > Data combined in EUDAQ

triggers BIF DIF

http://www.ohwr.org/projects/fmc-mtlu/vasnicka | BTTB 2017 Barcelona | 25.1..2017 | Page 6

Correlation of BIF Time vs AHCAL TDC

> Odd and even BX are treated separately (AHCAL specific feature)
> 4 us BX width => DESY beam structure (~1 us period) clearly visible

AHCAL EUDAQ Producer development strategy

- > Keeping the data as raw readout cycles is fairly limiting
- > rewriting the producer to support different modes:
- > ReadOutCycle (done & tested)
 - EUDAQ Event# = Readout cycle number
 - Full dump of the raw data from the cycle
- > TriggerID (done& tested)
 - EUDAQ Event# = TriggerID
 - Full dump of readout cycle, that was intercepted by TLU trigger (or empty block if no data was recorded for that particular TLU trigger)
 - Inefficient for AHCAL
- > More TriggerIDs in ROC (work in progress)
 - EUDAQ Event# = TriggerID
 - Motivated by AHCAL efficiency
 - Online event building: All AHCAL hits from same BX window (4us/200ns) and same ROC stored in one EUDAQ Event
- > Timestamp oriented Event building (work in progress)
 - EUDAQ Event# = (arbitrary sequence number) + TIMESTAMP
 - 48-bit 40 MHz counter (unique within 2 months)
 - For test of EUDAQ 2

Triggers ||

Busy

Acquisition

Plans

- > Test of EUDAQ 2: February 2017
 - Verify functionality before EUDAQ 2 is released
 - Improved data rate expected
- > Test of AHCAL in magnetic field (CERN SPS, 5/2017)
- > Combined beam test with CMS HGCAL (CERN SPS, 6/2017)
- > Test of AHCAL with a new TLU (DESY TB, Q1-Q2/2017)
 - 6 lemo inputs, 4 full-size HDMI connectors for DUT
 - New clocking chip with advanced jitter filtering
 - Firmware to be finished soon

Conclusion

- Combined testbeams with AHCAL
- > Externally triggered and a self-triggered devices working togetger(!)
- > AHCAL & MIMOSA beam telescope @DESY
 - "safe" mode: only 1 triggerID per acquisition cycle at the moment
 - More efficient solution soon
- > AHCAL & Mini-TLU (a.k.a. AHCAL BIF)
- > Good correlation observed in both setups
- > Moving on towards basic event building in AHCAL EUDAQ producer
 - Necessary to record more than 1 TriggerIDs within a 16 ms AHCAL Acquisition cycle
- > Plenty of combined tests of AHCAL foreseen this year
- > First test user of EUDAQ 2
 - Adding Timestamp to the EUDAQ Events → for further event building in EUDAQ2

Spare

Typical timing (details)

Results

> Trigger validation fixed (correlations of TLU trigger time and AHCAL TDC)

Testbeam performance

- > Chip design duty cycle: 0.5% Operated at 30%
- > Different conditions at CERN PS, CERN SPS and DESY beam line
 - spill structure, beam intensity, particle rate stability, SiPM noise

	CERN PS TB 2014 USB	CERN SPS TB 2015 HDMI	DESY TB 2016 HDMI ¹		TB 2016 1ms spill	TB 2016 Triggered
Max asics in layer	16	16	16	4	4	4
ROC/s (calib=full asics)	1-2	6.2	~15	29	-	?
ROC/s (autotrig)	2-3	~17	17	*25-30	99	90~100
Duty cycle	(?)	(?)	10%	*20-30%	9.2%	?
Events/s	<30 (?)	<165 (?)	135	<200	41	90~100

> DESY accelerator: not continuous \rightarrow many empty cycles

 \rightarrow Didn't reach theoretical 450 events/s in TB

Current performance @ DESY beam

Problems

- > DIF2 LVDS receivers started in wrong state => DIF2 did not see the validation
 - Fixed in CCC by new command for a manual long trigger pulse
 - Once long trigger sent, LVDS receivers are recovered until poweroff
- > 20 ns glitch in the trigger pulse
 - could not run more than 16384 cycles
 - Results in the trigger count mismatch

> Triggers come even when busy is set

- Producer was not designed for that
- Trigger ID shift by ~50 events in 1000 events
- > 2 triggers in the same ROC
 - Fixed in EUDAQ producer

TLU ↔ CCC handshake

Spiroc operation: ADC & TDC (Testbeam case)

- > ADC signal is stored after a programmable delay from internal trigger
- > TDC value is stored at the moment of internal trigger
- > In testbeam mode: possibility to validate trigger (else throw away)

Common running @ CERN PS 2014

