
Statistical Software Tools
RooFit/RooStats

Lorenzo Moneta (CERN)

Terascale Statistics School 2015

Terascale Statistics School 2015L. Moneta

Introduction
We will cover only RooFit/RooStats

Statistical tools for:
point estimation: determine the best estimate of a parameter

estimation of confidence (credible) intervals

lower/upper limits or multi-dimensional contours

hypothesis tests:

evaluation of p-value for one or multiple hypotheses (discovery
significance)

Model description and sharing of results

analysis combination

2

Terascale Statistics School 2015L. Moneta

Outline
Today:

Introduction to Fitting in ROOT
Model building and parameter estimation in RooFit
Exercises

Tomorrow
Introduction to RooStats
Interval estimation tools (Likelihood/Bayesian)
Hypothesis tests
Frequentist interval/limit calculation (CLs)
Exercises

Thursday
Tutorial on building model with the HistFactory

3

Introduction to Fitting in ROOT

Terascale Statistics School 2015L. Moneta

Outline

Introduction to Fitting:
fitting methods in ROOT
how to fit a histogram in ROOT,
how to retrieve the fit result.

Building fit functions in ROOT.
Interface to Minimization.
Common Fitting problems.
Using the ROOT Fit GUI (Fit Panel).

5

Terascale Statistics School 2015L. Moneta

What is Fitting ?
Estimate parameters of an hypothetical distribution from the
observed data distribution

y = f (x | θ) is the fit model function
Find the best estimate of the parameters θ assuming f (x | θ)

6

Example
Higgs ➞ γγ spectrum
We can fit for:

the expected number of
Higgs events
the Higgs mass 

Terascale Statistics School 2015L. Moneta

⇤2 =
�

i

(Yi � f(Xi, �))2

⇥2
i

Least Square (𝛘2) Fit
Minimizes the deviations between the observed y and the
predicted function values:
Least square fit (𝛘2) : minimize square deviation
weighted by the errors

observed errors (Neyman 𝛘2)
σi = √Ni for the histograms

expected errors (Pearson 𝛘2)
σi = √f (Xi, Ư̆)

7

Terascale Statistics School 2015L. Moneta

Maximum Likelihood Fit
The parameters are estimated by finding the maximum of the
likelihood function (or minimum of the negative log-likelihood
function).

Likelihood:

Find best value θ,  
the maximum of

The least-square fit and the maximum likelihood fit are
equivalent when the distribution of observed events in each bin
is normal.

f (x | θ) is gaussian

8

L(x|✓) =
Y

i

P (xi|✓)

Terascale Statistics School 2015L. Moneta

ML Fit of an Histogram
The Likelihood for a histogram is obtained  
by assuming a Poisson distribution in  
every bin:

Poisson(ni|νi)
ni is the observed bin content.
νi is the expected bin content,  
νi = f (xi|θ) , where xi is the bin center, assuming a linear function
within the bin. Otherwise it is obtained from the integral of the function
in the bin.

For large histogram statistics (large bin contents) bin distribution
can be considered normal

equivalent to least square fit
For low histogram statistics the ML method is the correct one !

9

Terascale Statistics School 2015L. Moneta

Simple Gaussian Fitting
Suppose we have this histogram

we want to estimate the mean and sigma of the
underlying gaussian distribution.

10
variable x

nu
m

be
r o

f o
bs

er
ve

d
ev

en
ts

/b
in

Terascale Statistics School 2015L. Moneta

Fitting Histogram

How to fit the histogram:

11

root [] TF1 * f1 = new TF1(“f1”,”gaus”);

root [] f1->SetParameters(1,0,1);

root [] h1->Fit(f1);
 FCN=27.2252 FROM MIGRAD STATUS=CONVERGED 60 CALLS 61 TOTAL

 EDM=1.12393e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

 EXT PARAMETER STEP FIRST

 NO. NAME VALUE ERROR SIZE DERIVATIVE

 1 Constant 7.98760e+01 3.22882e+00 6.64363e-03 -1.55477e-05

 2 Mean -1.12183e-02 3.16223e-02 8.18642e-05 -1.49026e-02

 3 Sigma 9.73840e-01 2.44738e-02 1.69250e-05 -5.41154e-03

For displaying the fit parameters:
gStyle->SetOptFit(1111);

Terascale Statistics School 2015L. Moneta

Creating the Fit Function
To create a parametric function object (a TF1) :

we can use the available functions in ROOT library

and also use it to write formula expressions
[0],[1],[2] indicate the parameters

we can also use pre-defined functions

using pre-defined functions we have the parameter name
automatically set to meaningful values.
initial parameter values are estimated whenever possible.
pre-defined functions avalaible:

gaus, expo, landau, pol0,1..,10, chebyshev

12

TF1 * f1 = new TF1(“f1”,”gaus”);

TF1 * f1 = new TF1(“f1”,”[0]*TMath::Gaus(x,[1],[2])”);

Statistics School 2012, Desy

Building More Complex Functions

Sometimes better to write directly the functions in C/C++
but in this case object cannot be fully stored to disk

Using a general free function with parameters:

any C++ object implementing double operator() (double *x, double *p)

e.g using a lambda function (with Cling and C++-11)

13

double function(double *x, double *p){

return p[0]*TMath::Gaus(x[0],p[0],p[1]);

}

TF1 * f1 = new TF1(“f1”,function,xmin,xmax,npar);

struct Function {

double operator()(double *x, double *p){

return p[0]*TMath::Gaus(x[0],p[0],p[1]);}

};

Function func;

TF1 * f1 = new TF1(“f1”,&func,xmin,xmax,npar,”Function”);

auto f1 = new TF1(“f1”,[](double *x, double *p){return p[0]*x[0];},0,10,1);

Statistics School 2012, Desy

Retrieving The Fit Result
The main results from the fit are stored in the fit function,
which is attached to the histogram; it can be saved in a file
(except for C/C++ functions were only points are saved).
The fit function can be retrieved using its name:

The parameter values/error using indices (or their names):

It is also possible to access the TFitResult class which has all
information about the fit, if we use the fit option “S”:

14

TF1 * fitFunc = h1->GetFunction(“f1”);

fitFunc->GetParameter(par_index);

fitFunc->GetParError(par_index);

TFitResultPtr r = h1->Fit(f1,”S”);

r->Print();

TMatrixDSym C = r->GetCorrelationMatrix();
C++ Note: the TFitResult
class is accessed by using
operator-> of TFitResultPtr

Statistics School 2012, Desy

Some Fitting Options
Fitting in a Range

Quite / Verbose: option “Q”/”V”.

Likelihood fit for histograms

option “L” for count histograms;

option “WL” in case of weighted counts.

Default is chi-square with observed errors (and skipping empty bins)

option “P” for Pearson chi-square  
(expected errors) with empty bins

Use integral function of the function in bin

Compute MINOS errors : option “E”

15

h1->Fit(“gaus”,””,””,-1.5,1.5);

h1->Fit(“gaus”,”L”);

h1->Fit(“gaus”,”V”);

h1->Fit(“gaus”,”LW”);

h1->Fit(“gaus”,”P”);

All fitting options documented in reference guide or User Guide (Fitting Histogram chapter)

h1->Fit(“gaus”,”L E”);

h1->Fit(“gaus”,”L I”);

Terascale Statistics School 2015L. Moneta

Note on Binned Likelihood Fit

Log-Likelihood is computed using Baker-Cousins procedure
(Likelihood 𝛘2)

-2lnλ(θ) is an equivalent chi-square
Its value at the minimum can be used for checking the fit
quality

avoiding problems with bins with low content

ROOT computes -lnλ(θ)
retrieve it using TFitResult::MinFcnValue()

16

Applications How to fit a histogram

Binned Likelihood
The statistic to be minimized is what Baker and Cousins call the
likelihood chi-square because it is a likelihood ratio but is
distributed under H0 as a �2(nbins�1):

�2
�(✓) = �2 ln�(✓) = 2

X

i

[µ
i

(✓)� n
i

+ n
i

ln(n
i

/µ
i

(✓))]

where the sum is over bins and µ
i

(✓) = Np
i

(✓).

This solves the problems of binning encountered when using Chi-square,
since there is no minimum number of events per bin.
(The last term in the expression for �2

� is taken to be zero when n
i

= 0).

However, not much seems to be known about optimal binning for GOF,
but clearly some bins (most bins?) must have more than one event.

This method has the area-conserving property: at the minimum, the
normalization is automatically correct:

P
i

µ
i

(✓̂) =
P

i

n
i

.
F. James (CERN) Statistics for Physicists, 7: Applications March 2015, DESY 10 / 43

Statistics School 2012, Desy

Parameter Errors
Errors returned by the fit are computed from the second derivatives
of the likelihood function

Asymptotically the parameter estimates are normally distributed. The
estimated correlation matrix is then:

A better approximation to estimate the confidence level in the parameter is
to use directly the log-likelihood function and look at the difference from the
minimum.

17

– Method of Minuit/Minos (Fit option “E”)
– obtain a confidence interval which is in general not

symmetric around the best parameter estimate

TFitResultPtr r = h1->Fit(f1,”E S”);

r->LowerError(par_number);

r->UpperError(par_number);

Statistics School 2012, Desy

Minimization
The fit is done by minimizing the least-square or likelihood
function.
A direct solution exists only in case of linear fitting

it is done automatically in such cases (e.g fitting polynomials).
Otherwise an iterative algorithm is used:

Minuit is the minimization algorithm used by default
ROOT provides two implementations: Minuit and Minuit2
other algorithms exists: Fumili, or minimizers based on GSL, genetic
and simulated annealing algorithms

To change the minimizer:

Other commands are also available to control the
minimization:

18

ROOT::Math::MinimizerOptions::SetDefaultMinimizer(“Minuit2”);

ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

Statistics School 2012, Desy

Minimization Techniques

Methods like Minuit based on gradient can get stuck easily in local minima.

Stochastic methods like simulated annealing or genetic algorithms can help
to find the global minimum.

19

Quadratic Newton Simulated Annealing
Example: Fitting 2 peaks in a spectrum

Terascale Statistics School 2015L. Moneta

Function Minimization
Common interface class (ROOT::Math::Minimizer)
Existing implementations available as plug-ins:

Minuit (based on class TMinuit, direct translation from Fortran code)
with Migrad, Simplex, Minimize algorithms

Minuit2 (new C++ implementation with OO design)
with Migrad, Simplex, Minimize and Fumili2

Fumili (only for least-square or log-likelihood minimizations)
GSLMultiMin: conjugate gradient minimization algorithm from GSL (Fletcher-Reeves, BFGS)
GSLMultiFit: Levenberg-Marquardt (for minimizing least square functions) from GSL
Linear for least square functions (direct solution, non-iterative method)
GSLSimAn: Simulated Annealing from GSL
Genetic: based on a genetic algorithm implemented in TMVA

All these are available for ROOT fitting and in RooFit/RooStats

Possible to combine them (e.g. use Minuit and Genetic)

Easy to extend and add new implementations
e.g. minimizer based on NagC exists in the development branch (see here)

20

Statistics School 2012, Desy

Comments on Minimization
Sometimes fit converges to a wrong solution

Often is the case of a local minimum which is not the global one.
This is often solved with better initial parameter values. A minimizer like Minuit is able
to find only the local best minimum using the function gradient.
Otherwise one needs to use a genetic or simulated annealing minimizer (but it can be
quite inefficient, e.g. many function calls).

Sometimes fit does not converge

can happen because the Hessian matrix is not positive defined
e.g. there are no minimum in that region ➞wrong initial parameters;

numerical precision problems in the function evaluation
need to check and re-think on how to implement better the fit model function;

highly correlated parameters in the fit. In case of 100% correlation the point
solution becomes a line (or an hyper-surface) in parameter space. The
minimization problem is no longer well defined.

21

Warning in <Fit>: Abnormal termination of minimization.

PARAMETER CORRELATION COEFFICIENTS
 NO. GLOBAL 1 2
 1 0.99835 1.000 0.998
 2 0.99835 0.998 1.000

Signs of trouble…

Statistics School 2012, Desy

Mitigating fit stability problems

When using a polynomial parametrization:
a0+a1x+a2x2+a3x3 nearly always results in strong correlations
between the coefficients.

problems in fit stability and inability to find the right solution at high order

This can be solved using a better polynomial parametrization:
e.g. Chebychev polynomials

22

Statistics School 2012, Desy

The Fit Panel
The fitting in ROOT using the FitPanel GUI

GUI for fitting all ROOT data objects
(histogram, graphs, trees)

Using the GUI we can:
select data object to fit
choose (or create) fit model function
set initial parameters
choose:

fit method (likelihood, chi2)
fit options (e.g Minos errors)
drawing options

change the fit range

23

Statistics School 2012, Desy

Fit Panel (2)
The Fit Panel provides also extra functionality:

24

Control the minimization Advanced drawing tools
Contour plot

Scan plot of
minimization function

RooFit

Terascale Statistics School 2015L. Moneta

Outline
Introduction to RooFit

Basic functionality
Model building using the workspace
Composite models

Exercises on RooFit:
building and fitting model

26

Material based on slides from W.
Verkerke (author of RooFit)

Terascale Statistics School 2015L. Moneta

RooFit
Toolkit for data modeling

developed by W. Verkerke and D. Kirkby

model distribution of observable x in terms of
parameters p

probability density function (pdf): P(x;p)
pdf are normalized over allowed range of observables
x with respect to the parameters p

27

Wouter Verkerke, NIKHEF

Mathematic – Probability density functions

• Probability Density Functions describe probabilities, thus
– All values most be >0

– The total probability must be 1 for each p, i.e.

– Can have any number of dimensions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Note distinction in role between parameters (p) and observables (x)
– Observables are measured quantities

– Parameters are degrees of freedom in your model

Terascale Statistics School 2015L. Moneta

Why RooFit ?
ROOT function framework can handle complicated
functions

but require writing large amount of code
Normalization of p.d.f. not always trivial

RooFit does it automatically
In complex fit, computation performance important

need to optimize code for acceptable performance
built-in optimization available in RooFit

evaluation only when needed
Simultaneous fit to different data samples
Provide full description of model for further use

29

Terascale Statistics School 2015L. Moneta

RooFit
RooFit provides functionality for building the pdf’s

complex model building from standard
components
composition with addition product and
convolution

All models provide the functionality for
maximum likelihood fitting
toy MC generator
visualization

30

Terascale Statistics School 2015L. Moneta

RooFit Modeling
Mathematical concepts are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

31

Terascale Statistics School 2015L. Moneta

RooFit Modeling
Gaus(x,m,s)

Example: Gaussian pdf

RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s)

RooRealVar x

RooRealVar m

RooRealVar s

RooGaussian g

RooFit code:

32

Represent relations between variables and functions as
client/server links between objects

Terascale Statistics School 2015L. Moneta

RooFit Functionality
pdf visualization

RooPlot * xframe = x->frame();
pdf->plotOn(xframe);
xframe->Draw();

Plot range taken from limits of x

Axis label from gauss title

Unit  
normalizationA RooPlot is an empty frame 

capable of holding anything  
plotted versus it variable

33

Terascale Statistics School 2015L. Moneta

RooFit Functionality
Toy MC generation from any pdf

data visualization

RooDataSet * data = pdf->generate(*x,10000);

RooPlot * xframe = x->frame();
data->plotOn(xframe);
xframe->Draw();

Generate 10000 events from Gaussian p.d.f and show distribution

Note that dataset is unbinned
(vector of data points, x, values)  
 
Binning into histogram is performed  
in data->plotOn() call

34

Terascale Statistics School 2015L. Moneta

RooFit Functionality
Fit of model to data

e.g. unbinned maximum likelihood fit

data and pdf visualization after fit
RooPlot * xframe = x->frame();
data->plotOn(xframe);
pdf->plotOn(xframe);
xframe->Draw();

pdf = pdf->fitTo(data);

PDF 
automatically 
normalized 
to dataset

35

Terascale Statistics School 2015L. Moneta

RooFit Workspace
RooWorkspace class: container for all objected created:

full model configuration
PDF and parameter/observables descriptions
uncertainty/shape of nuisance parameters

(multiple) data sets
Maintain a complete description of all the model

possibility to save entire model in a ROOT file
all information is available for further analysis

Combination of results joining workspaces in a single one
common format for combining and sharing physics results

36

RooWorkspace workspace(“w”);
workspace.import(*data);
workspace.import(*pdf);
workspace.writeToFile(“myWorkspace.root”)

Terascale Statistics School 2015L. Moneta

RooFit Factory
RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s)

The workspace provides a factory method to auto-
generates objects from a math-like language
(the p.d.f is made with 1 line of code instead of 4)

RooWorkspace w;
w.factory(“Gaussian::g(x[2,-10,10],m[0],s[3])”)

In the tutorial we will work using the workspace
factory to build models

37

38

Using the workspace

• Workspace

– A generic container class for all RooFit objects of your project

– Helps to organize analysis projects

• Creating a workspace 

• Putting variables and function into a workspace

– When importing a function or pdf, all its components (variables) are
automatically imported too

RooWorkspace w(“w”) ;

 RooRealVar x(“x”,”x”,-10,10) ;
 RooRealVar mean(“mean”,”mean”,5) ;
 RooRealVar sigma(“sigma”,”sigma”,3) ;
 RooGaussian f(“f”,”f”,x,mean,sigma) ;  

 // imports f,x,mean and sigma
 w.import(f) ;

39

Using the workspace

• Looking into a workspace 
 
 
 
 

• Getting variables and functions out of a workspace

• Writing workspace and contents to file

 w.Print() ;  

 variables

 (mean,sigma,x)

 p.d.f.s

 RooGaussian::f[x=x mean=mean sigma=sigma] = 0.249352

 
 // Variety of accessors available
 RooRealVar * x = w.var(“x”);
 RooAbsPdf * f = w.pdf(“f”);  

 
 w.writeToFile(“wspace.root”) ;

40

Factory syntax

• Rule #1 – Create a variable  

• Rule #2 – Create a function or pdf object

– Leading ‘Roo’ in class name can be omitted

– Arguments are names of objects that already exist in the workspace

– Named objects must be of correct type, if not factory issues error

– Set and List arguments can be constructed with brackets {}

x[-10,10] // Create variable with given range
x[5,-10,10] // Create variable with initial value and range
x[5] // Create initially constant variable

Gaussian::g(x,mean,sigma)  
 ! RooGaussian(“g”,”g”,x,mean,sigma)  
 
Polynomial::p(x,{a0,a1})  
 ! RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1));

ClassName::Objectname(arg1,[arg2],...)

41

Factory syntax

• Rule #3 – Each creation expression returns the name of the
object created

– Allows to create input arguments to functions ‘in place’ rather than in
advance

• Miscellaneous points

– You can always use numeric literals where values or functions are expected 

– It is not required to give component objects a name, e.g. 

Gaussian::g(x[-10,10],mean[-10,10],sigma[3])  
 ! x[-10,10]
 mean[-10,10]
 sigma[3]
 Gaussian::g(x,mean,sigma)

Gaussian::g(x[-10,10],0,3)

SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;

42•

Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…  
Chebychev polynomial

Physics inspired
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,….

Non-parametric
Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class

43

Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec  

 Gaussian Gaussian::g(x,mean,sigma)

 Breit-Wigner BreitWigner::bw(x,mean,gamma)

 Landau Landau::l(x,mean,sigma)

 Exponential Exponential::e(x,alpha)

 Polynomial Polynomial::p(x,{a0,a1,a2})

 Chebychev Chebychev::p(x,{a0,a1,a2})

 Kernel Estimation KeysPdf::k(x,dataSet)

 Poisson Poisson::p(x,mu)

 Voigtian Voigtian::v(x,mean,gamma,sigma)  
(=BW⊗G)

44

Factory syntax – using expressions

• Customized p.d.f from interpreted expressions

• Customized class, compiled and linked on the fly

• re-parametrization of variables (making functions)

– note using expr (builds a function, a RooAbsReal)

– instead of EXPR (builds a pdf, a RooAbsPdf)

 
 w.factory(“EXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;  

 
 w.factory(“CEXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;  

 
 w.factory(“expr::w(‘(1-D)/2’,D[0,1])”) ;  

This usage of upper vs lower case applies also for other factory commands

(SUM, PROD,....)

45

RooBMixDecay

RooPolynomial

RooHistPdf
•

RooArgusBG

Model building – (Re)using standard components

• Most realistic models are constructed as the sum of one or more p.d.f.s (e.g.
signal and background)

• Facilitated through operator p.d.f RooAddPdf

RooAddPdf
+

RooGaussian

46

Factory syntax: Adding p.d.f.

• Additions of PDF (using fractions)

– Note that last PDF does not have an associated fraction

• PDF additions (using expected events instead of fractions)

– the resulting model will be extended

– the likelihood will contain a Poisson term depending on the total number of
expected events (Nsig+Nbkg)

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)

 SUM::name(frac1*PDF1,PDFN)

 SUM::name(Nsig*SigPDF,Nbkg*BkgPDF)

L (x | p) -> L(x|p)Poisson(Nobs,Nexp)

47

Component plotting - Introduction

• Plotting, toy event generation and
fitting works identically for
composite p.d.f.s

– Several optimizations applied behind
the scenes that are specific to
composite models (e.g. delegate event
generation to components)

• Extra plotting functionality specific
to composite pdfs

– Component plotting

 // Plot only argus components
 w::sum.plotOn(frame,Components(“argus”),LineStyle(kDashed)) ;

 // Wildcards allowed
 w::sum.plotOn(frame,Components(“gauss*”),LineStyle(kDashed)) ;

48

RooBMixDecay

RooPolynomial

RooHistPdf
•

RooArgusBG

RooGaussian

Model building – Products of uncorrelated p.d.f.s

RooProdPdf*

49

Uncorrelated products – Mathematics and constructors

• Mathematical construction of products of uncorrelated p.d.f.s is
straightforward  
 

– No explicit normalization required ! If input p.d.f.s are unit normalized,
product is also unit normalized

– (Partial) integration and toy MC generation automatically uses factorizing
properties of product, e.g. is deduced from structure.

• Corresponding factory operator is PROD

2D nD

 w.factory(“Gaussian::gx(x[-5,5],mx[2],sx[1])”) ;
 w.factory(“Gaussian::gy(y[-5,5],my[-2],sy[3])”) ;

 w.factory(“PROD::gxy(gx,gy)”) ;  

50

Introducing correlations through composition

• RooFit pdf building blocks do not require variables as input, just
real-valued functions

– Can substitute any variable with a function expression in parameters and/or
observables  

– Example: Gaussian with shifting mean

– No assumption made in function on a,b,x,y being observables or
parameters, any combination will work

 
 w.factory(“expr::mean(‘a*y+b’,y[-10,10],a[0.7],b[0.3])”) ;
 w.factory(“Gaussian::g(x[-10,10],mean,sigma[3])”) ;  

51

Operations on specific to composite pdfs

• Tree printing mode of workspace reveals component structure –
w.Print(“t”)  
 
 

– Can also make input files for GraphViz visualization 
(w.pdf(“sum”)->graphVizTree(“myfile.dot”))

– Graph output on ROOT Canvas in near future 
(pending ROOT integration  
of GraphViz package)

 
 RooAddPdf::sum[g1frac * g1 + g2frac * g2 + [%] * argus] = 0.0687785
 RooGaussian::g1[x=x mean=mean1 sigma=sigma] = 0.135335
 RooGaussian::g2[x=x mean=mean2 sigma=sigma] = 0.011109
 RooArgusBG::argus[m=x m0=k c=9 p=0.5] = 0 

52

Constructing joint pdfs (RooSimultaneous)

• Operator class SIMUL to construct joint models  
at the pdf level

– need a discrete observable (category) to label the channels

• Construct joint datasets

– contains observables (“x”) and category (“index”)

 
 // Pdfs for channels ‘A’ and ‘B’
 w.factory(“Gaussian::pdfA(x[-10,10],mean[-10,10],sigma[3])”) ;  
 w.factory(“Uniform::pdfB(x)”) ;

 // Create discrete observable to label channels
 w.factory(“index[A,B]”) ;

 // Create joint pdf (RooSimultaneous)
 w.factory(“SIMUL::joint(index,A=pdfA,B=pdfB)”) ;  

 
 RooDataSet *dataA, *dataB ;
 RooDataSet dataAB(“dataAB”,”dataAB”,
 RooArgSet(*w.var(“x”),*w.cat(“index”)),
 Index(*w.cat(“index”)),  
 Import(“A”,*dataA),Import(“B”,*dataB)) ;  

53

Constructing the likelihood

• So far focus on construction of pdfs, and basic use for fitting
and toy event generation

• Can also explicitly construct the likelihood function of and pdf/
data combination

– Can use (plot, integrate) likelihood like any RooFit function object

RooAbsReal* nll = pdf->createNLL(data) ;

RooPlot* frame = parameter->frame() ;
nll->plotOn(frame,ShiftToZero()) ;

54

Constructing the likelihood

• Example – Manual MIMIZATION using MINUIT

– Result of minimization are immediately propagated to RooFit variable
objects (values and errors)

– Also other minimizers (Minuit, GSL etc) supported

– N.B. Different minimizer can also be used from RooAbsPdf::fitTo

 // Create likelihood (calculation parallelized on 8 cores)
 RooAbsReal* nll = w::model.createNLL(data,NumCPU(8)) ;

 RooMinimizer m(*nll) ; // create Minimizer class  
 m.minimize(“Minuit2”,”Migrad”); // minimize using Minuit2
 m.hesse() ; // Call HESSE
 m.minos(w::param) ; // Call MINOS for ‘param’

 RooFitResult* r = m.save() ; // Save status (cov matrix etc)

//fit a pdf to a data set using Minuit2 as minimizer
pdf.fitTo(*data, RooFit::Minimizer(“Minuit2”,”Migrad”)) ;

Wouter Verkerke, NIKHEF 55

Basics – Importing data

• Unbinned data can also be imported from ROOT TTrees

– Imports TTree branch named “x”.

– Can be of type Double_t, Float_t, Int_t or UInt_t.  
All data is converted to Double_t internally

– Specify a RooArgSet of multiple observables to import  
multiple observables  

• Binned data can be imported from ROOT THx histograms

– Imports values, binning definition and SumW2 errors (if defined)

– Specify a RooArgList of observables when importing a TH2/3.

// Import unbinned data
RooDataSet data(“data”,”data”,x,Import(*myTree)) ;

// Import binned data
RooDataHist data(“data”,”data”,x,Import(*myTH1)) ;

Terascale Statistics School 2015L. Moneta

RooFit Summary
Overview of RooFit functionality

not everything covered
not discussed on how it works internally
(optimizations, analytical deduction, etc..)

Capable to handle complex model
scale to models with large number of parameters
being used for many analysis at LHC

Workspace:
easy model creation using the factory syntax
tool for storing and sharing models (analysis
combination)

56

Terascale Statistics School 2015L. Moneta

RooFit Documentation
Starting point: http://root.cern.ch/drupal/content/roofit

Users manual (134 pages ~ 1 year old)

Quick Start Guide (20 pages, recent)

Link to 84 tutorial macros (also in $ROOTSYS/tutorials/roofit)

More than 200 slides from W. Verkerke documenting all features
are available at the French School of Statistics 2008

http://indico.in2p3.fr/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=750

57

INFN School of Statistics 2013

Time For Exercises !

58

Follow the RooFit exercises at the Twiki page:
https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsMarch2015

