Basics of calorimetry in test beams

Katja Krüger (DESY)

5th Beam Telescope and Test Beams Workshop

Barcelona, 24-27 January 2017

- > Calorimeter basics & Current developments in calorimetry
 - developments for electron-positron colliders
 - (HL-)LHC detector upgrades
- > Calorimeters in testbeams

Calorimeter basics & Current developments in calorimetry

Katja Krüger | Basics of Calorimetry in Test Beams | 24 January 2017 | Page 3/46

General Considerations for Calorimetry

- > want to measure particle energy, so main quality criterion is the energy resolution
- > usually, energy resolution of a calorimeter can be parameterised as

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

- stochastic term: caused by fluctuations in the number of measured shower particles
- calibration term: caused mainly by non-uniformities, e.g. by calibration
- noise term: everything contributing energy independent of initial particle energy, e.g. noise
- > need wide range of energies to characterize system performance

ECAL and **HCAL**

> differences between hadronic and electromagnetic showers:

- hadronic showers much larger: $\lambda_{lnt} \gg X_0$
- much larger variety of hadronic processes
- some fraction of energy in hadronic showers not measurable ("invisible")

usually dedicated electromagnetic and hadronic calorimeters

- ECAL: more compact; homogeneous or fine sampling
 - ATLAS: sampling, lead / LAr
 - CMS: homogeneous, crystals
- HCAL: large, coarser sampling
 - ATLAS: iron / scintillator
 - CMS: brass / scintillator

$$\frac{\sigma(E)}{E} = \frac{3\%}{\sqrt{E}} \oplus 0.5\% \oplus \frac{0.2 \text{ GeV}}{E}$$
$$\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 3\%$$
$$\frac{\sigma(E)}{\sqrt{E}} = \frac{100\%}{6} \oplus 4.5\%$$

 $\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.4\% \oplus \frac{0.3 \,\text{GeV}}{E}$

Katja Krüger | Basics of Calorimetry in Test Beams | 24 January 2017 | Page 5/46

F

Current developments

> developments of detectors for future electron-positron colliders

- main challenge: unprecedented jet energy resolution
- method: high granularity for Particle Flow Algorithms (PFA)
- > upgrades of LHC detectors (focus on HL-LHC)
 - main challenges
 - very high radiation dose
 - high pile-up
 - methods

- higher granularity
- improved time resolution
- > calorimeters also play an important role in many other areas (not covered here)
 - space experiments
 - calorimeters for ultimate single-hadron resolution (dual readout)

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons
 - ~ 1% neutrinos

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons

~ 1% neutrinos

tracking EM calorimeter HAD calorimeter

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons

1% neutrinos

tracking EM calorimeter HAD calorimeter

$(\sigma_{jet})^{2}$ $\approx (\sigma_{tracks})^{2}$ $+ (\sigma_{EMCalo})^{2}$ $+ (\sigma_{HADCalo})^{2}$ $+ (\sigma_{loss})^{2} + (\sigma_{confusion})^{2}$

Jet Energy Resolution

- > PFA resolution is clearly better than calorimeter alone
- > at high jet energy: correct association between tracks and calorimeter clusters is very important ⇒ calorimeter with very high granularity
- > at low jet energy: dominated by "classical" calorimeter energy resolution ⇒ hadronic calorimeter with good energy resolution

Calorimeter Technologies for PFA

CALICE: R&D collaboration for highly granular calorimeters

- ~360 physicists/engineers from 60 institutes and 19 countries from 4 continents
- Integrated R&D effort
- Benefit/Accelerate detector development due to <u>common</u> approach

> digital CAL: count number of hit pixels (off/on)

- > digital CAL: count number of hit pixels (off/on)
- semi-digital CAL: additional information about number of particles within one pixel by using 3 thresholds (off/standard/large/very large)
- > analog CAL: sum up signals in (larger) cells

> granularity required for a good energy resolution depends on readout concept

Analog ECAL: Active Material

Silicon

1024 pixel

SiD

ILD option

Scintillator

ILD option

Digital ECAL: Pixel Calorimeter Prototype

- > R&D for ALICE FoCal upgrade (Utrecht/Nikhef, Bergen)
- > full MAPS prototype, 24 layers
 - **3**mm W
 - 1mm sensor layer
 - 120µm sensor (2x2 chips)
 + PCB, glue, air, …
- > 39 M pixels in 4x4x10 cm³!

other R&D with prototypes ongoing at Tokyo, ORNL, Kolkata, Prague, ...

Digital ECAL: Event Display

display of single event (with pile-up) from 5.4 GeV electron beam

Katja Krüger | Basics of Calorimetry in Test Beams | 24 January 2017 | Page 17/46

CALICE HCAL Concepts

Katja Krüger | Basics of Calorimetry in Test Beams | 24 January 2017 | Page 18/46

PFA calorimeters: Technical Challenges

high granularity \rightarrow high channel count

- detector uniformity (active elements and absorber!)
 - avoid cooling inside detector volume
- integrated readout electronics: stringent constraints on space and power consumption
- > data reduction and concentration as early as possible
 - digitisation in integrated electronics
 - auto-trigger, zero suppression on/in detector
- mass assembly

- easy (compared to LHC) at electron positron colliders
 - radiation
 - pile-up
 - event rates

HL-LHC Detector Upgrades

> why

- huge radiation dose
- pileup: $25 \rightarrow 140$ to 200
- event rates: factor ~5-7 to nominal inst. luminosity

> how

- radiation hard materials
- higher granularity: allows separation of interesting particles from pile-up
- better timing resolution: aim for ~30ps resolution
- leads to challenging requirements for electronics, trigger and DAQ (not covered here)
- > need to be installed by 2026!

CMS Endcap Calorimeter Upgrade: Motivation

- > current CMS calorimeter endcap will not survive in HL-LHC conditions
- in 2015, decided to replace it with silicon-based highgranularity calorimeter
 - profit from extensive R&D on radiation hardness of silicon detectors for pixel and track detectors
 - synergy with high granularity calorimeter concepts developed for electron-positron colliders

CMS Endcap Calorimeter Upgrade

CMS High Granularity Calorimeter: HGCAL

three sections

- EE: silicon with tungsten absorber, 28 layers, 25 X₀ (~1.3 λ)
- FH: silicon with stainless steel absorber, 12 layers, 3.5 λ
- BH: scintillator with brass absorber, 11 layers, 5.5 λ
- silicon parts need to be maintained at -30°C
- key parameters
 - nearly 600 m² of silicon
 - 6 M readout channels
 - >20.000 modules, >90.000 readout ASICs
- ➤ TDR to be submitted by November 2017 → expect a lot of activity in the coming months

ATLAS calorimeter upgrades

- current ATLAS calorimeters can survive HL-LHC radiation
 - plan extensive electronics upgrades
- > two calorimeter upgrades considered:
 - high granularity LAr sFCAL not followed up because of risk of opening the cryostat
 - High Granularity Timing Device (HGTD)
 - in small gap between tracker and LAr calorimeter
 - coverage: 2.4 < η < 4.2
 - LGAD silicon sensors
 - 4 silicon sensor layers, design based on ILD silicon-tungsten ECAL
 - 2 options considered: with and without tungsten absorber layers
 - 3.4 M readout channels

Calorimeters in Testbeam

tests of components

- sensors / active layers
 - MIP response, time resolution, radiation tolerance, ...
- > system tests
 - absolutely essential because most relevant performance measures for calorimeters depend on the whole system
 - single particle energy linearity and resolution
 - electrons
 - different hadron species: pions, protons, kaons
 - particle ID based on shower shapes
 - two-particle separation
 - uniformity of the response
 - position resolution
 - jet energy resolution not directly accessible in beam tests
 - comparison of hadron showers in data and simulation

Muons, electron and hadrons in calorimeter beam test

particle species have different roles in beam tests

- > muons/MIPs
 - detector response to one charged particle
 - detector equalization / uniformity
- electrons
 - simple well-known showers
 - Inearity and resolution for electromagnetic showers
 - modeling of detector setup in simulation
- hadrons
 - complex much less well-known showers
 - Inearity and resolution for hadronic showers
 - modeling of evolution of hadronic showers in simulation

Component tests

signals

- size of MIP signal
- signal to noise ratio
- hit time resolution

Component tests

radiation tolerance >

- well known and understood for "standard" silicon sensors
- different for silicon sensors with intrinsic gain (LGAD, SiPM)
- extensive research for scintillator ongoing: damage depends on dose rate!

System tests

strategy

- > calibrate/equalize with MIPs (one energy)
- Inearity and response for electrons (energy scan, usually ~5 100 GeV)
- hadron calorimeter: linearity and response for hadrons (energy scan, usually ~10 200 GeV)
 - pions, protons, if possible kaons \rightarrow beam particle ID
 - both negative and positive beam particles (clean pions/kaons vs. protons)
- In the real detector, hadron energy linearity and resolution will depend on ECAL+HCAL system → test the combined system
- > detector uniformity:
 - scan large areas (HAD calorimeter: ~1 m²)
 - measure at several tilt angles
- > shower shapes, two-particle separation: essential for PFA performance
 - \rightarrow comparison to simulation

to fully characterize a calorimeter in testbeam, need many energies for several particle species \rightarrow long measurement times

System tests: smaller setups

- smaller setups (reduced number of layers, reduced thickness) can be important step:
 - interplay of the whole system
 - linearity
 - comparison to simulation
- cannot determine final resolution!

System tests: large setups

CALICE HCALs in testbeam: active volume ~1 m³

complete CALICE calorimeter system setup:

- ECAL
- HCAL
- tailcatcher
- electronics, cables, cooling, ...
- beam instrumentation: trigger, tracking, particle ID

System tests: large setups

CALICE HCALs in testbeam: active volume ~1 m³

complete CALICE calorimeter system setup:

- ECAL
- HCAL
- tailcatcher
- electronics, cables, cooling, ...
- beam instrumentation: trigger, tracking, particle ID

System test: CMS and ATLAS setups

CMS combined calo beam test

ATLAS combined calo beam test

CALICE ECALs: energy linearity

NIM A608 (2009) 372

CAN-016c

CALICE ECALs: energy linearity

NIM A608 (2009) 372

CAN-016c

> energy linearity for electrons better than 100 MeV / 1%

> need enough statistics to reach this precision (≥10000 events/energy)

CALICE ECALs: energy resolution

- reasonable energy resolution for electromagnetic showers
- > CALICE ECALs are optimised for granularity, not single particle energy resolution

CALICE HCALs: energy linearity (pions)

linear response to hadrons at the 1-2% level

needs to be taken into account in energy reconstruction

non-compensating HCAL intrinsically non-linear \rightarrow check for linearity is important

Energy Resolution for Single Hadrons: Comparison

JINST 7 (2012) P09017

JINST 11 (2016) P04001

CAN-042

software compensation improves stochastic term: $58\%/\sqrt{E} \rightarrow 45\%/\sqrt{E}$ measurement with 1 or 3 thresholds

3 thresholds improve resolution at large energies

before and **after** calibration

stochastic term 63%/√E

constant term 4%

Energy Resolution for Single Hadrons: AHCAL

JINST 7 (2012) P09017

- Software compensation (SC):
 - non-compensating calorimeters show different signals for electromagnetic and hadronic showers
 - hadronic showers include electromagnetic subshowers
 - in the reconstruction, use different weights for electromagnetic and hadronic subshowers

Tungsten as HCAL Absorber

- tungsten as absorber allows very compact calorimeters
- > disadvantages: expensive, mechanics is a challenge
- usually used for ECALs, but also studied for CALICE AHCAL (in view of possible application at CLIC)
 JINST 10 (2015) P12006

nearly compensating at ~20-50 GeV for the used tungsten thickness
resolution similar to iron absorber

Performance of combined scintillator calorimeter system

- in a real calorimeter system, hadrons are not measured purely in HCAL, but in ECAL + HCAL (+tailcatcher)
- ECAL and HCAL typically have different absorber, sampling ratio, active material
- combined system of scintillator-tungsten ECAL + scintillator-steel AHCAL has very similar performance to AHCAL alone

Comparison with simulation: shower sub-structure

Comparison with simulation: shower separation

- > PandoraPFA: PFA algorithm used to optimise design of ILC detectors
- test of cluster separation with AHCAL pion shower data:
 - map measured AHCAL test beam pion showers onto ILD geometry
 - test shower separation of a "neutral" hadron (initial track segment removed) of 10 GeV and a charged hadron of 10 or 30 GeV
- > good shower energy reconstruction for distances larger than 10 cm
- > good description by up-to-date physics list

JINST 6 (2011) P07005

Calorimeter beam tests in the coming year(s)

- > HL-LHC detector upgrades:
 - designs to be frozen, important documents to be written in 2017
 - input from beam tests will be crucial
 - continued sensor tests
 - HGCAL: full system test
- > CALICE calorimeter prototypes:
 - demonstrate that the concepts are scalable to a full collider detector
 - tests of ECAL, HCAL and ECAL+HCAL planned

Conclusions

- most important performance measures for calorimeters depend on system performance
- ongoing efforts to address challenges at future colliders: radiation hardness, high granularity, timing
- > calorimeters need dedicated and complex testbeams
 - different particle species: MIPs, electrons, pions, protons, ideally also kaons; both beam polarities
 - Iarge energy ranges
 - full calorimeter system: ECAL, HCAL, tailcatcher
 - trigger, tracking, particle ID
 - →nearly a complete collider detector experiment
- interesting and important calorimeter testbeams in the coming year(s)

Backup

General Considerations for Calorimetry

- > want to measure particle energy, so showers of charged and neutral particles should be contained
- > electromagnetic showers are simple:
 - electrons and positrons radiate photons
 - photons produce electron-positron pairs
 - ~one step per radiation length X₀
 - radial development is described by Moliére radius
- hadronic showers much less well understood, much more variations!
 - many processes: quasi-elastic scattering ... nuclear break up
 - usually have electromagnetic subshower
 - relevant length scale: interaction length λ_{Int}

General Considerations for Calorimetry

- showers of charged and neutral particles should be contained
 - absorber: dense material, short radiation length X₀ or nuclear interaction length λ₁
 - active material: detect the (charged) particles in the shower
 - homogeneous calorimeter: absorber is active
 - sampling calorimeter: different materials

General Considerations for a (Particle Flow) Calorimeter

Sandwich calorimeter

- absorber: dense material, small Molière radius, small radiation length X₀ or nuclear interaction length λ₁
- active layers: "count" the particles in the shower

> ECAL:

- rather small → more expensive material affordable
- absorber: tungsten
- several concepts for the active layers

> HCAL:

- rather large volume, but total detector cost includes also magnet and iron yoke:
 - compact calorimeter (expensive material)
 → smaller (cheaper) magnet
 - larger calorimeter (cheaper material)
 → larger (more expensive) Magnet
 - Basic solution: steel as absorber material, tungsten as possible alternative
- several concepts for the active layers

Digital HCAL

- Resistive Plate Chamber: local gas amplification between 2 glass plates with high voltage
- > 1*1 cm² readout pads
- readout: 1 bit (digital)
- SiD alternative

Semi-Digital HCAL

Z (cm)

- Resistive Plate Chamber: local gas amplification between 2 glass plates with high voltage
- > 1*1 cm² readout pads
- readout: 2 bit (semi-digital)
- ILD option

Analog HCAL

- Scintillator tiles with wave length shifting fibers, read out by SiPMs
- > 3*3 cm² 12*12 cm² tiles
- readout: 12 bit (analog)
- ILD option and SiD base design

Pion and Proton showers in the AHCAL

ATLAS (14mm-Fe/3mm-Sc)

60

40

(a)

100

80

Beam momentum [GeV/c]

h/e

0.9

0.8

0.7

0.6

0

20

CAN-051

SDHCAL comparison to simulation

- > RPCs are not sensitive to average dE/dx, but to the number of points of ionisation → tests different aspect of simulation than scintillator
- tune simulation to muons and electrons
- > get reasonable description of pion showers

Particle Flow Validation: SDHCAL with ArborPFA

- > ArborPFA: particle flow algorithm using the tree-like structure of showers
- test of cluster separation with SDHCAL pion shower data
 - overlay of 2 pion events: 10 GeV "neutral" particle (initial track segment removed) and charged hadron with 10 – 50 GeV at 5 – 30 cm distance
- > good efficiency and purity to assign hits to the neutral cluster for distances of 10 cm or more

How small should the cells be?

Cell size vs. Reconstruction Algorithm

- the 3 HCAL concepts differ in several aspects
 - granularity
 - energy reconstruction method
 - active medium
- > all of them influence the energy resolution for single particles and jets
- disentangle with data and validated simulation
 - 3*3 cm² AHCAL data with different reconstruction methods

Cell size vs. Reconstruction Algorithm

- > the 3 HCAL concepts differ in several aspects
 - granularity
 - energy reconstruction method
 - active medium
- all of them influence the energy resolution for single particles and jets
- disentangle with data and validated simulation
 - 3*3 cm² AHCAL data with different reconstruction methods
 - 1*1 cm² AHCAL simulation with different reconstruction methods

optimal cell size depends on energy reconstruction method

ARBOR

> ArborPFA:

- particle flow algorithm using the tree-like structure of showers
- energy information used in finalising clustering and track association
- modular architecture: uses PandoraSDK toolkit and Marlin framework, available at https://github.com/SDHCAL/ArborPFA

test of cluster separation with SDHCAL pion shower data

- overlay of 2 pion events: 10 GeV "neutral" particle (initial track segment removed) and charged hadron with 10 – 50 GeV at 5 – 30 cm distance
- good efficiency and purity to assign hits to the neutral cluster for distances of 10 cm or more

