Determining symmetries of multi-Higgs potentials

Igor Ivanov

CFTP, Instituto Superior Técnico, Universidade de Lisboa

Bethe Forum Discrete Symmetries, Bonn, April 3-7, 2017

ро曰н
iscamasewom Potencial humano
$\begin{array}{lll}\star & \star & \star \\ \star & \star \\ \star & \star{ }^{\star} \\ & \star{ }^{\star}\end{array}$

(1) Introduction

(2) Determining abelian symmetries
(3) Non-abelian symmetries in 3HDM

4 Further developments

bSM model building

Why caring about discrete symmetry groups?

- The SM has many weak points: does not describe DM and baryogenesis, cannot explan the origin of fermion masses, mixing, $C P$-violation. In particular, the Higgs sector of the SM is overstretched and does not help with these issues.
- Constructions beyond the SM (bSM) based on several new fields, in particular, on extended scalar sectors, offer natural solutions (to some of them), see Ishimori et al, 1002.0211; Altarelli, Feruglio, 1003.3552; King, Luhn, 1301.1340 for classical reviews and King, 1701.04413, Ivanov, 1702.03776 for very recent ones.
- Many new fields \rightarrow many interaction terms \rightarrow lots of free parameters. Imposing extra global symmetries helps constrain the models.

Model-building with multiple Higgses

Two approaches:
(1) postulate some symmetry setting, add extra fields to encode it and generate the desired symmetry breaking pattern,
(2) fix a designed class of bSM models, then explore all symmetries which are possible with this field content.
will show the second approach at work in two problems:

- finding all abelian symmetry groups in any class of bSM models, with illustrations from NHDM
- finding all non-abelian discrete symmetry groups in 3HDM scalar sector.

The focus is on the method of recognizing symmetries
and on establishing exhaustive lists of possibilities,
not on the specific bSM models.

Model-building with multiple Higgses

Two approaches:
(1) postulate some symmetry setting, add extra fields to encode it and generate the desired symmetry breaking pattern,
(2) fix a designed class of bSM models, then explore all symmetries which are possible with this field content.

I will show the second approach at work in two problems:

- finding all abelian symmetry groups in any class of bSM models, with illustrations from NHDM,
- finding all non-abelian discrete symmetry groups in 3HDM scalar sector.

The focus is on the method of recognizing symmetries and on establishing exhaustive lists of possibilities, not on the specific bSM models.

Abelian (rephasing) symmetries

Rephasing symmetries in NHDM

NB: NHDM scalar potential is an illustration; the method itself is general. Higgs potential V in NHDM is built of $\phi_{j}, j=1, \ldots, N$:

$$
V=Y_{i j}\left(\phi_{i}^{\dagger} \phi_{j}\right)+Z_{i j k l}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{l}\right),
$$

It may be invariant under $\phi_{j} \mapsto e^{i \alpha_{j}} \phi_{j}$ with some α_{j}. The first task is to find rephasing symmetry group A of a given potential.

- If V depends only on $\left|\phi_{j}\right|^{2}$, then $A=[U(1)]^{N}$: any rephasing will do.
- If not, $V=V_{0}+k$ rephasing-sensitive terms. For each term, write invariance condition and solve the system of k such conditions for α_{j}.

Seems straightforward so far...

Rephasing symmetries in NHDM

For example, $\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right)$ changes under a general rephasing as

$$
\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) \quad \mapsto \quad e^{i\left(-2 \alpha_{1}+\alpha_{2}+\alpha_{3}\right)}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) .
$$

Write it as $\sum_{j=1}^{N} d_{1 j} \alpha_{j}$, with $d_{1 j}=(-2,1,1,0, \ldots, 0)$. Then if

$$
d_{1 j} \alpha_{j}=2 \pi n_{1}
$$

with any integer n_{1}, this term remains invariant. Repeat for all terms to obtain

$$
\text { The task is to solve this system for } \alpha_{j} \text { and deduce the symmetry group. }
$$

\square

Rephasing symmetries in NHDM

For example, $\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right)$ changes under a general rephasing as

$$
\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) \quad \mapsto \quad e^{i\left(-2 \alpha_{1}+\alpha_{2}+\alpha_{3}\right)}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) .
$$

Write it as $\sum_{j=1}^{N} d_{1 j} \alpha_{j}$, with $d_{1 j}=(-2,1,1,0, \ldots, 0)$. Then if

$$
d_{1 j} \alpha_{j}=2 \pi n_{1}
$$

with any integer n_{1}, this term remains invariant. Repeat for all terms to obtain

$$
d_{i j} \alpha_{j}=2 \pi n_{i} \quad \text { with } \quad n_{i} \in \mathbb{N} .
$$

The task is to solve this system for α_{j} and deduce the symmetry group. NB: the rephasing group is encoded in the $k \times N$ matrix $d_{i j}$.

Rephasing symmetries in NHDM

A 4HDM example:

$$
V=V_{0}+\lambda_{1}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{1}\right)+\lambda_{2}\left(\phi_{4}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{2}\right)+\lambda_{3}\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{3}\right)+\text { h.c. }
$$

gives

$$
d_{i j}=\left(\begin{array}{cccc}
2 & 0 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
0 & -1 & 2 & -1
\end{array}\right)
$$

Rephasing symmetries in NHDM

The matrix $d_{i j}$ always has integer entries. By certain elementary steps

- permutation of rows or columns,
- sign flips of rows or columns,
- adding a column/row to another column/row
it can be diagonalized: $d=R \cdot D \cdot C$, where $|\operatorname{det} R|=|\operatorname{det} C|=1$ and

$$
D=\left(\begin{array}{llllllll}
d_{1} & & & & & & \\
& d_{2} & & & & & \\
& & \ddots & & & & \\
& & & d_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & & \\
& & & & & 0 & \cdots
\end{array}\right), \quad r=\operatorname{rank} d
$$

with $d_{i}>0$ and such that d_{i} divides d_{i+1}.
D is known as the Smith Normal Form (SNF) of $d_{i j}$. It exists and is unique for any integer-valued matrix.

Rephasing symmetries in NHDM

The key observation: elementary steps do not change the set of solutions.
Now the equations are decoupled; each $d_{i} \tilde{\alpha}_{i}=2 \pi \tilde{n}_{i}$ has solutions $\tilde{\alpha}_{i}=2 \pi \tilde{n}_{i} / d_{i}$, which generates the group $\mathbb{Z}_{d_{i}}$.

The rephasing group is therefore

$$
A=\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times[U(1)]^{N-r}
$$

The 4HDM example

gives

Rephasing symmetries in NHDM

The key observation: elementary steps do not change the set of solutions.
Now the equations are decoupled; each $d_{i} \tilde{\alpha}_{i}=2 \pi \tilde{n}_{i}$ has solutions $\tilde{\alpha}_{i}=2 \pi \tilde{n}_{i} / d_{i}$, which generates the group $\mathbb{Z}_{d_{i}}$.

The rephasing group is therefore

$$
A=\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times[U(1)]^{N-r}
$$

The 4HDM example

$$
V=V_{0}+\lambda_{1}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{1}\right)+\lambda_{2}\left(\phi_{4}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{2}\right)+\lambda_{3}\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{3}\right)+\text { h.c. }
$$

gives

$$
D=\mapsto\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 7 & 0
\end{array}\right), \quad A=\mathbb{Z}_{7} \times U(1) .
$$

3HDM with quarks

Another example: 3HDM quark sector

$$
-\mathcal{L}_{Y}=\Gamma_{j L_{d}}^{\left(j_{\phi}\right)} \bar{Q}_{L j_{L}} \phi_{j_{\phi}} d_{R j_{d}}+\Delta_{j \dot{L}_{u}}^{\left(j_{\phi}\right)} \bar{Q}_{L j_{L}} \tilde{\phi}_{j_{\phi}} u_{R j_{u}}+\text { h.c. }
$$

with the following textures:

$$
\begin{aligned}
\Gamma^{(1)} & =\left(\begin{array}{lll}
0 & 0 & \times \\
0 & \times & 0 \\
0 & 0 & 0
\end{array}\right), \quad \Gamma^{(2)}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
\times & 0 & 0
\end{array}\right), \quad \Gamma^{(3)}=\left(\begin{array}{ccc}
\times & 0 & 0 \\
0 & 0 & \times \\
0 & \times & 0
\end{array}\right), \\
\Delta^{(1)} & =\left(\begin{array}{lll}
\times & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \times
\end{array}\right), \quad \Delta^{(2)}=\left(\begin{array}{lll}
0 & \times & 0 \\
0 & 0 & 0 \\
\times & 0 & 0
\end{array}\right), \quad \Delta^{(3)}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & \times \\
0 & \times & 0
\end{array}\right) .
\end{aligned}
$$

There are 12 Yukawa terms; 6 with d_{R} 's and 6 with u_{R} 's.

3HDM with quarks

We order the 12 fields as $\left(\phi_{j_{\phi}} ; Q_{L j_{L}} ; d_{R_{j}} ; u_{R j_{u}}\right)$, where $j_{\phi}, j_{L}, j_{d}, j_{u}=1,2,3$. Each Yukawa term produces a row $d_{i j}$ with entries ± 1 or 0 .

For example, the term with $\Gamma_{13}^{(1)}$ is $\bar{Q}_{L 1} \phi_{1} d_{R 3}$, and its row $d_{i j}$ is

$$
(\overbrace{1,0,0}^{\phi}|\overbrace{-1,0,0}^{Q_{L}}| \overbrace{0,0,1}^{d_{R}} \mid \overbrace{0,0,0}^{u_{R}}),
$$

and the term with $\Delta_{31}^{(2)}$ is $\bar{Q}_{L 3} \tilde{\phi}_{2} u_{R 1}$, and its row $d_{i j}$ is

$$
(0,-1,0|0,0,-1| 0,0,0 \mid 1,0,0) .
$$

3HDM with quarks

The entire matrix $d_{i j}$ is a 12×12 matrix:

$$
d_{i j}=\left(\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

3HDM with quarks

$D=\operatorname{diag}(1,1,1,1,1,1,1,1,1,5,0,0)$.
The symmetry group is $A=\mathbb{Z}_{5} \times U(1)_{Y} \times U(1)_{B}$.
The \mathbb{Z}_{5}-charges of the fields are: $q_{\mathbb{Z}_{5}}=(0,2,4|2,1,0| 3,1,2 \mid 2,4,0)$.
More examples and applications:

- Remnant discrete symmetries in GUT models: Petersen, Ratz, Schieren, 0907.4049,
- NHDM scalar sector: Ivanov, Keus, Vdovin, 1112.1660; Ivanov, Lavoura, 1302.3656; Branco, Ivanov, 1511.02764,
- 3HDM quark sector: Ivanov, Nishi, 1309.3682, Nishi, 1411.4909,
- flavor symmetry groups in $S O(10)$ GUT models with any number of Higgses in 10, 126, 120 irreps. Ivanov, Lavoura, 1511.02720.

Beyond case-by-case checks

Next task: find all rephasing symmetry groups possible with the given field content, and do it efficiently, avoiding case-by-case checks.

This is encoded in the structures of all possible matrices $d_{i j}$ built of rows of special type, such as

$$
(2,-2,0,0, \ldots), \quad(2,-1,-1,0, \ldots), \quad(1,1,-1,-1,0, \ldots)
$$

up to permutations, for NHDM scalar potential, or

$$
(1,-1,1,0, \ldots), \quad(-1,-1,1,0, \ldots)
$$

up to permutations, for NHDM Yukawa sector.

Beyond case-by-case checks

The main point:

$$
|\operatorname{det} d|=|\operatorname{det} D|=\prod_{j} d_{j} .
$$

The procedure is then the following:

- get rid of all "automatic" $U(1)$'s. For NHDM scalar sector it implies $U(N) \rightarrow U(N) / U(1) \simeq \operatorname{PSU}(N) ;$
- using the structure of d, find all values of $|\operatorname{det} d|=|A|$;
- if the prime decomposition of $|A|$ involves only first powers, then A is uniquely determined without the need to explicitly find the SNF,
- if its prime decomposition involves higher powers, then one needs to explicitly find the SNF to resolve the ambiguity.

This analysis can be often done manually, without computer-algebra assistance.

Beyond case-by-case checks

For example,

- if $|A|=5$, then the group A must be \mathbb{Z}_{5};
- if $|A|=30$, then the group A must be $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$;
- if $|A|=4$, then the group A can be either $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. One needs to check whether SNF is $(\ldots, 1,2,2)$ or $(\ldots, 1,1,4)$.

In addition, one can often place the exact upper bound on $|A|$

- scalar sector of NHDM: $|A| \leq 2^{N-1}$ for any N;
- NHDM with quarks: $|A| \leq(N+1)^{2} / 3$ for any N

Beyond case-by-case checks

For example,

- if $|A|=5$, then the group A must be \mathbb{Z}_{5};
- if $|A|=30$, then the group A must be $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$;
- if $|A|=4$, then the group A can be either $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. One needs to check whether SNF is $(\ldots, 1,2,2)$ or $(\ldots, 1,1,4)$.
In addition, one can often place the exact upper bound on $|A|$.
- scalar sector of NHDM: $|A| \leq 2^{N-1}$ for any N;
- NHDM with quarks: $|A| \leq(N+1)^{2} / 3$ for any N.

What initially seemed to require a massive computer-assisted case by case check turns into an arithmetical exercise.

Non-abelian symmetries

in 3HDM scalar sector

Strategy

The main problem

find all discrete symmetry groups G which can be implemented in 3HDM scalar sector without producing accidental symmetries.

- The scalar potential in any NHDM is symmetric under the simultaneous rephasing $\alpha_{j}=\alpha$, which is a part of $U(1)_{Y}$. We are interested in additional symmetries. Therefore, we will search, within 3HDM, for G's which are subgroups not of $U(3)$ but of $P S U(3)=U(3) / U(1)=S U(3) / \mathbb{Z}_{3}$.
- Various families of discrete subgroups of $S U(3)$ were studied in much detail, see e.g. the recent works Grimus, Ludl, 1006.0098, 1110.6376, and used in "group scans" in search of observed flavor-physics patterns. This body of literature does not help us much with our problem we face. We need a constructive approach to find all G 's which answer the question.

"Abelian LEGO" strategy

Step 1: find all possible discrete abelian groups $A_{i} \subset \operatorname{PSU}(3)$; any allowed G can have only those abelian subgroups. These are "LEGO bricks" with which we will build a non-abelian model.

Step 2: build G by combining various A_{i} but avoid producing abelian groups not in the list!

Step 3: for each G built, check that it fits $\operatorname{PSU}(3)$ and that it does not produce accidental symmetry.

Step 1: Abelian groups in 3HDM

For $N=3$ we get the following finite $A_{i} \subset \operatorname{PSU}(3)$:

$$
A_{i}=\mathbb{Z}_{2}, \quad \mathbb{Z}_{3}, \quad \mathbb{Z}_{4}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \quad \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

The last one is not a rephasing subgroup. Its full preimage in $\operatorname{SU}(3)$ is the famous $\Delta(27)$:

$$
\Delta(27) / Z(S U(3)) \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3} .
$$

For $\operatorname{PSU}(3)$, this is the only "new" group in addition to the rephasing groups Ivanov, Keus, Vdovin, 1112.1660.

This list is complete: imposing any other finite abelian symmetry group on the potential unavoidably leads to continuous symmetry group.

Step 2: Group-theoretic part

- Any finite (non-abelian) G must contain only these A_{i},
- their orders have only two prime factors: 2 and $3 \Rightarrow$ by Cauchy's theorem, $|G|=2^{a} 3^{b}$,
- by Burnside's $p^{a} q^{b}$ theorem, G is solvable (see introduction in Ivanov, Vdovin, 1210.6553): it contains a normal abelian subgroup A
- \Rightarrow so far, we don't have any restriction on the size and structure of G / A.
- We proved in Ivanov, V'ovin, 1210.6553, that, inside PSU(3), a stronger statement holds: G contains a normal maximal abelian subgroup ($=$ normal self-centralizing subgroup)

Step 2: Group-theoretic part

- Any finite (non-abelian) G must contain only these A_{i},
- their orders have only two prime factors: 2 and $3 \Rightarrow$ by Cauchy's theorem, $|G|=2^{a} 3^{b}$,
- \Rightarrow by Burnside's $p^{a} q^{b}$ theorem, G is solvable (see introduction in Ivanov, Vdovin, 1210.6553): it contains a normal abelian subgroup A
- \Rightarrow so far, we don't have any restriction on the size and structure of G / A.
- M/e proved in Ivanov, V/dovin, 1210.6553 , that, inside PSII(3), a stronger statement holds: G contains a normal maximal abelian subgroup ($=$ normal self-centralizing subgroup)

Step 2: Group-theoretic part

- Any finite (non-abelian) G must contain only these A_{i},
- their orders have only two prime factors: 2 and $3 \Rightarrow$ by Cauchy's theorem, $|G|=2^{a} 3^{b}$,
- \Rightarrow by Burnside's $p^{\text {a }} q^{b}$ theorem, G is solvable (see introduction in Ivanov, Vdovin, 1210.6553): it contains a normal abelian subgroup A

$$
g^{-1} A g=A \quad \forall g \in G .
$$

- \Rightarrow so far, we don't have any restriction on the size and structure of G / A.
- We proved in Ivanov, Vdovin, 1210.6553, that, inside PSU(3), a stronger statement holds: G contains a normal maximal abelian subgroup (= normal self-centralizing subgroup)

Step 2: Group-theoretic part

- Any finite (non-abelian) G must contain only these A_{i},
- their orders have only two prime factors: 2 and $3 \Rightarrow$ by Cauchy's theorem, $|G|=2^{a} 3^{b}$,
- \Rightarrow by Burnside's $p^{\text {a }} q^{b}$ theorem, G is solvable (see introduction in Ivanov, Vdovin, 1210.6553): it contains a normal abelian subgroup A

$$
g^{-1} A g=A \quad \forall g \in G .
$$

- \Rightarrow so far, we don't have any restriction on the size and structure of G / A.
- We proved in Ivanov, Vdovin, 1210.6553, that, inside PSU(3), a stronger statement holds: G contains a normal maximal abelian subgroup ($=$ normal self-centralizing subgroup)

Step 2: Group-theoretic part

- Any finite (non-abelian) G must contain only these A_{i},
- their orders have only two prime factors: 2 and $3 \Rightarrow$ by Cauchy's theorem, $|G|=2^{a} 3^{b}$,
- \Rightarrow by Burnside's $p^{\text {a }} q^{b}$ theorem, G is solvable (see introduction in Ivanov, Vdovin, 1210.6553): it contains a normal abelian subgroup A

$$
g^{-1} A g=A \quad \forall g \in G .
$$

- \Rightarrow so far, we don't have any restriction on the size and structure of G / A.
- We proved in Ivanov, Vdovin, 1210.6553, that, inside PSU(3), a stronger statement holds: G contains a normal maximal abelian subgroup (= normal self-centralizing subgroup).

Consequences of a normal maximal abelian subgroup

Consider A, abelian subgroup of G. Centralizer of A in G is the subgroup of all elements $g \in G$ which commute with all elements $x \in A$. We get

$$
A \subseteq C_{G}(A) \subset G .
$$

If $A=C_{G}(A)$, then A is self-centralizing.

Consequences of a normal maximal abelian subgroup

If $A \subset C_{G}(A)$, pick up some $b \in C_{G}(A), b \notin A$ and consider $B=\langle A, b\rangle$, which is also an abelian subgroup of G.
We then get:

$$
A \subset B \subseteq C_{G}(B) \subseteq C_{G}(A) \subset G
$$

Consequences of a normal maximal abelian subgroup

If $B \subset C_{G}(B)$, pick up some $c \in C_{G}(B), c \notin B$ and consider $C=\langle B, c\rangle$, which is also an abelian subgroup of G.
Repeat until we hit a self-centralizing (maximal) abelian subgroup:

$$
A \subset B \subset \cdots \subset K=C_{G}(K) \subseteq \cdots \subseteq C_{G}(B) \subseteq C_{G}(A) \subset G
$$

Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in G ?

- If A is normal in G, then $g^{-1} A g=A$, so g acts on elements of A by some group-preserving permutation (automorphism of A).
- So, for every $g \in G$ we get an automorphism $\in \operatorname{Aut}(A)$. We get a map $f: G \rightarrow \operatorname{Aut}(A)$.
- Note that Ker $f=C_{G}(A)$. Indeed, Ker f contains all elements g which induce the trivial permutation on $A: g^{-1} a g=a$ for all $a \in A$.
- If A is self-centralizing, $\operatorname{Ker} f=A$. Therefore, map $\tilde{f}: G / A \rightarrow \operatorname{Aut}(A)$ is injective: different elements of G / A map to different elements of $\operatorname{Aut}(A)$.
- Thus, subgroup of $\operatorname{Aut}(A)$

Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in G ?

- If A is normal in G, then $g^{-1} A g=A$, so g acts on elements of A by some group-preserving permutation (automorphism of A).
- So, for every $g \in G$ we get an automorphism $\in \operatorname{Aut}(A)$. We get a map $f: G \rightarrow \operatorname{Aut}(A)$.
- Note that $\operatorname{Ker} f=C_{G}(A)$. Indeed, Ker f contains all elements g which induce the trivial permutation on $A: g^{-1} a g=a$ for all $a \in A$.
- If A is self-centralizing, $\operatorname{Ker} f=A$. Therefore, man $\tilde{f}: G / A \rightarrow A u t(A)$ is injective: different elements of G / A map to different elements of $\operatorname{Aut}(A)$.
- Thus, subgroup of Aut(A).

Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in G ?

- If A is normal in G, then $g^{-1} A g=A$, so g acts on elements of A by some group-preserving permutation (automorphism of A).
- So, for every $g \in G$ we get an automorphism $\in \operatorname{Aut}(A)$. We get a map $f: G \rightarrow \operatorname{Aut}(A)$.
- Note that $\operatorname{Ker} f=C_{G}(A)$. Indeed, $\operatorname{Ker} f$ contains all elements g which induce the trivial permutation on $A: g^{-1} a g=a$ for all $a \in A$.

- Thus, $G / A \subseteq A u t(A)$, and G can be constructed as an extension of A by a subgroup of $A u t(A)$.

Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in G?

- If A is normal in G, then $g^{-1} A g=A$, so g acts on elements of A by some group-preserving permutation (automorphism of A).
- So, for every $g \in G$ we get an automorphism $\in \operatorname{Aut}(A)$. We get a map $f: G \rightarrow \operatorname{Aut}(A)$.
- Note that $\operatorname{Ker} f=C_{G}(A)$. Indeed, $\operatorname{Ker} f$ contains all elements g which induce the trivial permutation on $A: g^{-1} a g=a$ for all $a \in A$.
- If A is self-centralizing, $\operatorname{Ker} f=A$. Therefore, map $\tilde{f}: G / A \rightarrow \operatorname{Aut}(A)$ is injective: different elements of G / A map to different elements of $\operatorname{Aut}(A)$.

Thus, $G / A \subseteq \operatorname{Aut}(A)$
subgroup of $\operatorname{Aut}(A)$.
and G can be constructed as an extension of A by a

Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in G?

- If A is normal in G, then $g^{-1} A g=A$, so g acts on elements of A by some group-preserving permutation (automorphism of A).
- So, for every $g \in G$ we get an automorphism $\in \operatorname{Aut}(A)$. We get a map $f: G \rightarrow \operatorname{Aut}(A)$.
- Note that $\operatorname{Ker} f=C_{G}(A)$. Indeed, $\operatorname{Ker} f$ contains all elements g which induce the trivial permutation on $A: g^{-1} a g=a$ for all $a \in A$.
- If A is self-centralizing, $\operatorname{Ker} f=A$. Therefore, map $\tilde{f}: G / A \rightarrow \operatorname{Aut}(A)$ is injective: different elements of G / A map to different elements of $\operatorname{Aut}(A)$.
- Thus, $G / A \subseteq \operatorname{Aut}(A)$, and G can be constructed as an extension of A by a subgroup of $\operatorname{Aut}(A)$.

Automorphism groups

$$
G=A . P, \quad \text { extension of } A \text { by } P, \quad P \subseteq A u t(A) .
$$

Overview of possibilities:

A	$\operatorname{Aut}(A)$	"usable" subgroups P
\mathbb{Z}_{2}	$\{1\}$	-
\mathbb{Z}_{3}	\mathbb{Z}_{2}	\mathbb{Z}_{2}
\mathbb{Z}_{4}	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$G L_{2}(2) \simeq S_{3}$	$\mathbb{Z}_{2}, \mathbb{Z}_{3}, S_{3}$
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$G L_{2}(3)$	$\mathbb{Z}_{2}, \mathbb{Z}_{4}$

Step 3: Constructing G by extensions, \mathbb{Z}_{4} example

Example: $A=\mathbb{Z}_{4}$. Then $\operatorname{Aut}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{2}$, so G is extension of \mathbb{Z}_{4} by \mathbb{Z}_{2}.
There are several possibilities.
(1) extensions which lead to larger abelian groups $\left(\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$ are immediately excluded;
(2) split extension $\mathbb{Z}_{4} \rtimes Z_{2} \simeq D_{4}$

If $a=\operatorname{diag}(i,-i, 1)$, then

Step 3: Constructing G by extensions, \mathbb{Z}_{4} example

Example: $A=\mathbb{Z}_{4}$. Then $\operatorname{Aut}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{2}$, so G is extension of \mathbb{Z}_{4} by \mathbb{Z}_{2}.
There are several possibilities.
(1) extensions which lead to larger abelian groups $\left(\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$ are immediately excluded;
(2) split extension $\mathbb{Z}_{4} \rtimes Z_{2} \simeq D_{4}$:

$$
D_{4}=\left\langle a, b \mid a^{4}=1, b^{2}=1, a b=b a^{3}\right\rangle .
$$

If $a=\operatorname{diag}(i,-i, 1)$, then

$$
b=\left(\begin{array}{ccc}
0 & e^{i \delta} & 0 \\
e^{-i \delta} & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { with arbitrary } \delta .
$$

Step 3: Constructing G by extensions, \mathbb{Z}_{4} example

A generic \mathbb{Z}_{4} potential can be brought to the form $V_{0}+V_{\mathbb{Z}_{4}}$, where

$$
V_{0}=-\sum_{a} m_{a}^{2}\left(\phi_{a}^{\dagger} \phi_{a}\right)+\sum_{a, b} \lambda_{a b}\left(\phi_{a}^{\dagger} \phi_{a}\right)\left(\phi_{b}^{\dagger} \phi_{b}\right)+\sum_{a \neq b} \lambda_{a b}^{\prime}\left(\phi_{a}^{\dagger} \phi_{b}\right)\left(\phi_{b}^{\dagger} \phi_{a}\right),
$$

and

$$
V_{\mathbb{Z}_{4}}=\lambda_{1}\left(\phi_{3}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\lambda_{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }
$$

The λ_{1} term is invariant under b, while the λ_{2} term transforms as

If we restrict parameters of $V_{0}\left(m_{11}^{2}=m_{22}^{2}, \lambda_{11}=\lambda_{22}, \lambda_{13}=\lambda_{23}, \lambda_{13}^{\prime}=\lambda_{23}^{\prime}\right)$ then the potential is symmetric under one particular D_{4} group in which the value of $\delta=\arg \lambda_{2} / 2$.

Step 3: Constructing G by extensions, \mathbb{Z}_{4} example

A generic \mathbb{Z}_{4} potential can be brought to the form $V_{0}+V_{\mathbb{Z}_{4}}$, where

$$
V_{0}=-\sum_{a} m_{a}^{2}\left(\phi_{a}^{\dagger} \phi_{a}\right)+\sum_{a, b} \lambda_{a b}\left(\phi_{a}^{\dagger} \phi_{a}\right)\left(\phi_{b}^{\dagger} \phi_{b}\right)+\sum_{a \neq b} \lambda_{a b}^{\prime}\left(\phi_{a}^{\dagger} \phi_{b}\right)\left(\phi_{b}^{\dagger} \phi_{a}\right),
$$

and

$$
V_{\mathbb{Z}_{4}}=\lambda_{1}\left(\phi_{3}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\lambda_{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }
$$

The λ_{1} term is invariant under b, while the λ_{2} term transforms as

$$
\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2} \mapsto e^{-4 i \delta}\left(\phi_{2}^{\dagger} \phi_{1}\right)^{2} .
$$

If we restrict parameters of $V_{0}\left(m_{11}^{2}=m_{22}^{2}, \lambda_{11}=\lambda_{22}, \lambda_{13}=\lambda_{23}, \lambda_{13}^{\prime}=\lambda_{23}^{\prime}\right)$ then the potential is symmetric under one particular D_{4} group in which the value of $\delta=\arg \lambda_{2} / 2$.

Step 3: Constructing G by extensions, \mathbb{Z}_{4} example

(3) quaternion group $Q_{4}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, a b=b a^{3}\right\rangle$.

If $a=\operatorname{diag}(i,-i, 1)$, then

$$
b\left(Q_{4}\right)=\left(\begin{array}{ccc}
0 & e^{i \delta} & 0 \\
-e^{-i \delta} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Again, the \mathbb{Z}_{4} part of the potential:

$$
V_{\mathbb{Z}_{4}}=\lambda_{1}\left(\phi_{3}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\lambda_{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }
$$

Upon this b, the λ_{1} term changes its sign. The only way to impose Q_{4} is to set $\lambda_{1}=0$. But then the potential becomes invariant under a continuous transformation: $\operatorname{diag}\left(e^{i \alpha}, e^{i \alpha}, 1\right)$.

We conclude that Q_{4} cannot be the finite symmetry group of potential.

Finite symmetry groups for $N=3$

We performed this kind of analysis for all abelian groups we have.
Results:

$$
\begin{gathered}
\mathbb{Z}_{2}, \quad \mathbb{Z}_{3}, \quad \mathbb{Z}_{4}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \quad S_{3}, \quad D_{4}, \quad A_{4}, \quad S_{4}, \\
\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}=\Delta(54) / \mathbb{Z}_{3}, \quad\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}=\Sigma(36) .
\end{gathered}
$$

This list is complete: trying to impose any other finite symmetry group will lead to a potential symmetric under a continuous group.

For each G, we constructed the general G-invariant potential \Rightarrow this allows us to prove the absence of accidental symmetries in each case.

Further developments

Search for GCPs

It may happen that G-invariant potential is automatically invariant under a generalized CP (GCP) transformation:

$$
J: \phi_{i} \mapsto X_{i j} \phi_{j}^{*}
$$

For each G, we searched for such J satisfying conditions:

$$
J^{2}=X X^{*} \in G, \quad J^{-1} \rho_{g} J=X \rho_{g} X^{\dagger}=\rho_{g^{\prime}} .
$$

and looked whether it implies new constraints.
$\mathbb{Z}_{4}, D_{4}, A_{4}, S_{4}, \Sigma(36)$ indeed force explicit $C P$-conservation. The others do not (this possibility was absent in 2HDM).

Search for GCPs

Matrix d plays a role in the problem.

$$
d\left(A_{4}\right)=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
0 & -2 & 2 \\
2 & 0 & -2
\end{array}\right), \quad d(\Delta(54))=\left(\begin{array}{rrr}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right) .
$$

- For $A_{4},-d=d$ up to permutations \rightarrow explicit $C P$-conservation.
- For $\Delta(27),-d \neq d \rightarrow$ possibility for explicit $C P$-violation.

CP4 3HDM

One peculiar possibility is 3HDM with CP4 (= GCP of order 4) without any other symmetry, Ivanov, Silva, 1512.09276.

- assumes very little: this is the minimal model realizing CP4. This is the first ever model based on CP4 without any accidental symmetry.
- CP4 can be extended to Yukawa sector, Aranda, Ivanov, Jimenez, 1608.08922.
- It is tractable analytically and is quite predictive.

In short, a good balance of minimality, predictiveness, and peculiarity. We are exploring its phenomenology.

Symmetry breaking patterns in NHDM

The vacuum expectation value alignment $\left\langle\phi_{i}^{0}\right\rangle=v_{i} e^{i \xi_{i}} / \sqrt{2}$ of a G-symmetric NHDM can be invariant under a residual symmetry group $G_{v} \subseteq G$.

Phenomenology depends on how much of G is broken! G-symmetric NHDM can lead to viable quark masses and CKM only if G is broken completely in the space of "active" doublets Leurer, Nir, Seiberg, hep-ph/9212278; Gonzalez Felipe et al, 1401.5807.

Symmetry breaking in 3HDM

Results on strongest and weakest breaking of discrete symmetries in 3HDM and on spontaneous CP-violation, Ivanov, Nishi, 1410.6139.

group	$\|G\|$	$\left\|G_{v}\right\|_{\text {min }}$	$\left\|G_{v}\right\|_{\text {max }}$	sCPv possible?
abelian	$2,3,4,8$	1	$\|G\|$	yes
$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}^{*}$	6	1	6	yes
S_{3}	6	1	6	-
$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}^{*}$	8	2	8	no
$S_{3} \times \mathbb{Z}_{2}^{*}$	12	2	12	yes
$D_{4} \times \mathbb{Z}_{2}^{*}$	16	2	16	no
$A_{4} \rtimes \mathbb{Z}_{2}^{*}$	24	4	8	no
$S_{4} \times \mathbb{Z}_{2}^{*}$	48	6	16	no
$C P$-violating $\Delta(27)$	18	6	6	-
$C P$-conserving $\Delta(27)$	36	6	12	yes
$\Sigma(36)$	72	12	12	no

The moral

The moral

When building bSM models, do not ignore unconventional mathematical tools. They may help you answer questions which traditional "poor physicist's methods" just cannot handle.

