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! Reflection of integrability of planar             SYMN = 4

Tree level amplitudes are highly constrained by the 

requirement that they be Yangian

[Drummond,Henn,Korchemsky,Sokatchev; 
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! Yangian invariant if both superconformally invariant 

and dual superconformally invariant



Much of this symmetry is broken at loop level. Broken 

symmetries are still powerful, so long as we understand 

the structure of the breaking
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e.g.

[Drummond,Henn,Korchemsky,Sokatchev] 

! Fixes BDS ansatz, and remainder function must be 

dual conformally invariant

! Non-chiral superloop[Caron-Huot; Beisert, Vergu]

! Collinear limits[Bargheer, Beisert, Galleas, Loebbert, McLoughlin;
Beisert, Henn, McLoughlin, Plefka; Sever, Vieira]

Can we constrain all anomalies in                         ?Y [PSU(2, 2|4)]
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Amplitudes in planar            can be written as

Annihilated by                        , but not by

N = 4

Q, S̄ ∼ Z∂/∂χ Q̄, S ∼ χ∂/∂Z

! These (dual) supersymmetries also fail for finite 

quantities such as the remainder or ratio functions

! Parity conjugate statement in dual momentum 

twistor space

Suggests the failure is more to do with the chiral 

representation rather than any genuine anomaly

{

Which dual supercharges are broken?
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The duality extends to all helicities if one constructs a 

supersymmetric extension of the Wilson Loop
(
∂̄ +A

)∣∣
X

U(σ1,σ2) = 0 U(σ1,σ1) = id
twistor superfieldN = 4

[Mason,DS]



Planar superamplitude

Tree superamplitude

Superloop in full

Superloop in sd N = 4
N = 4
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The full and self-dual theories both enjoy 

superconformal symmetry, but this symmetry 

is represented differently on the space of fields

N = 4

! The differences occur precisely for     and Q̄ S

! The geometric action on (momentum) twistor space 

corresponds to the self-dual transformations,

(δQ̄A)sd = χ∂A/∂µe.g.

Self-dual susy 

vs

full susy

for superloop 

Tree dual susy 

vs

loop dual susy

for amplitude 
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In twistor superspace, the incidence relations

µα̇ = ixαα̇λα χa = θαaλα mean that Z ∈ CP3|4

defines a chiral super null ray.
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is the space-time superloop, where



Any susy transformation deforms the superloop

fermion-boson curvature
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! In the self-dual theory, up to field equations and 

gauge transformations, the insertion is just
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! In the full theory, both the field equations and susy 

transformations are different, so there is a mismatch



fermion-fermion supercurvature

Explicitly, the remaining piece is

! In Abelian case

and easy to compute directly

εabcd∇βbWcd = ψa
β + θαaGαβ
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as expected

! Requires regularization, but not sensitive to scheme

! Appears at order       in non-chiral superloop[Caron-Huot]θθ̄

δQ̄(Wn) =
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〉
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Zi ∈ X

X ⊂ (i−1, i, i+1)O

to all loops[Caron-Huot,He]a→ Γcusp(a)
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V! Ω ≡ 〈λdλ〉 ∧ [ε̄a dµ] εabcddχbdχcdχd

= ε̄· χ ∂

∂µ
! D3|4Z

Contour takes residue as Z → Zi



! Only inhomogeneous terms have required poles

Under the BCFW deformation Z → Z(r) = Z + rZi+1

W(. . . , i,Z, i+1, . . .) = W(. . . , i, i+1, . . .)

+
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! Only inhomogeneous terms have required poles
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Under the BCFW deformation Z → Z(r) = Z + rZi+1

W(. . . , i,Z, i+1, . . .) = W(. . . , i, i+1, . . .)

+
i−2∑

j=i+2

[i,Z, i+1, j, j+1] W(j+1, . . . , i,Z×j ) W(Z×j ,Z!
j , i+1, . . . , j)

! On residue,                and subloops share X ≡ (iZ×j )Z!
j → Zi

! Dispersion integral over momentum fraction remains
[Beisert,Henn,Loebbert,McLoughlin,Plefka]
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Q̄(Rn) = Γcusp
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! Together with parity conjugate, fixes all Yangian 

anomalies

The anomaly for remainder function

follows from Leibnitz rule & collinear behaviour of BDS
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The apparent violation of Yangian invariance for finite 

quantities is entirely due to the difference between 

supersymmetries in the full and sd theories

The fact that the ‘anomaly’ is given recursively by a 

lower   , but higher   , amplitude means there really is 

no anomaly for the complete planar super S-matrix

! k

! c.f.    -symmetry in Type IIB [Beisert,Ricci,Tseytlin,Wolf]κ

! Also seems likely to be related to differential 

equation approach [Drummond,Henn]

This recursion relation provides a powerful constraint 

on multi-loop amplitudes           Song He’s talk


