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Abstract

We study the Minimal Supersymmetric Standard Model with iktial Flavour Violation for
the case of a large parameten § and arbitrary values of the supersymmetric mass parameters
We derive several resummation formulaefan 5-enhanced loop corrections, which were previ-
ously only known in the limit of supersymmetric masses faneadthe electroweak scale. Studying
first the renormalisation-scheme dependence of the restiomiarmula for the bottom Yukawa
coupling, we clarify the use of the shottom mixing angle ia #upersymmetric loop facta,,.
As a new feature, we finthn 5-enhanced loop-induced flavour-changing neutral curfe@NC)
couplings of gluinos and neutralinos which in turn give risenew effects in the renormalisa-
tion of the Cabibbo-Kobayashi-Maskawa matrix and in FCNGcpsses of3 mesons. For the
chromomagnetic Wilson coefficierits, these gluino-squark loops can be of the same size as
the known chargino-squark contribution. We discuss thepheenological consequences for the
mixing-induced CP asymmetry iB; — ¢Ks. We further quote formulae faB, — u*p~ and
B,—B, mixing valid beyond the decoupling limit and find a new cdmition affecting the phase
of the B, — B, mixing amplitude. Our resummeen S-enhanced effects are cast into Feynman
rules permitting an easy implementation in automatic datans.
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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) contdims Higgs doubletsH,, and Hy,
whose Yukawa couplings to quarks are given by

L, = —yJ wQfeH, + yj d;Q]eHy + h.c. 1)

Here@;, u; andd; are the usual left-handed doublet and right-handed sioglatk fields,e is the
antisymmetric x 2 matrix withe;o» = —es; = 1, andy, andy, are Yukawa matrices with generation
indicesi,j = 1,2,3. The holomorphy of the superpotential forbids couplingg#gfto dr and of
H, toug, so that the Yukawa Lagrangian of Eq. (1) is that of a two-ldiggublet model (2HDM) of
type Il. The neutral components of the Higgs doublets aequiicuum expectation values (vevs)
andvg with v = /v2 + vfl ~ 174 GeV leading to quark mass matricks, = y, v, andMy = yqvg.
Unitary rotations of the quark fields in flavour space diadiseahese matrices, the resulting basis of
mass eigenstates is no more a weak basis (with manifest Syltithetry) and the familiar Cabibbo-
Kobayashi-Maskawa (CKM) matrix appears in the couplinggshef W boson to the quark fields.
As long as only the tree-level couplings 6f, are considered the Yukawa couplings are diagonal in
flavour spaceyflj = yq,0i; (N0 sum overj). At this point no flavour-changing couplings of neutral
Higgs bosons occur and the diagonal Yukawa couplings aily eapressed in terms of quark masses
mg; andtan 8 = vy /vgl Ya; = ma, /va = ma;/(veos B) andy,; = my; /vy = my,/(vsin G).

If tan 3 is large the Higgs couplings to down-type fermions can bearoéd to a level which is
detectable in present-day B physics experiments. In paaticfortan 3 = O(50) the bottom Yukawa
couplingy, = yq, can be of order 1. A theoretical motivation of such large galaftan 3 is given by
bottom-top Yukawa unification, which occurs in SO(10) GUTdals with minimal Yukawa sector.



1 Introduction 3

:Hu :Hu
! [
—J_. ~.

di -7~ di |

” R

/ \ —_— !

Z Z TREE s

7

Figure 1: Effective coupling of the down-type quarksHg

Phenomenologically, the anomalous magnetic moment of thenrnmvites large values abn 3 [1],
but the current situation is inconclusive in the light ofertexperimental data on the hadroproduction
cross section measured by BaBar [2].

Once soft supersymmetry-breaking terms are consideredpdtiern described above changes dra-
matically: As pointed out first by Banks, one-loop diagramduice an effective coupling df,, to

d; [3]. Hall, Rattazzi and Sarid then discovered the relevacis loop contribution for largean 3
phenomenology [4-6]. IMsusy, the mass scale of the supersymmetry-breaking terms, i1 muc
larger than the masses and vevs of the Higgs sector, we agrate out the SUSY particles. The
resulting effective Lagrangian is that of a general 2HDMfedent from the type-Il 2HDM which we
encounter at tree level. In the Super-CKM basis for the qaatksquark fields, in which! = y4,6",

the Yukawa couplings of down-type quarks are given by thecsiffe Lagrangian

ngd = ya, diQ] eHy — @flj CZiQ]THZ + h.c. )

In this paper we restrict ourselves to the case that the &t8t¥sbreaking terms are flavour-diagonal in
the Super-CKM basis. As a consequence, all gluino-squaakigand neutralino-squark-quark cou-
plings in the MSSM Lagrangian are flavour-diagonal. Furtherchargino-squark-quark couplings
come with the same CKM elements as the corresponding cgspbh W bosons or charged Higgs
bosons to (s)quarks. This scenario of naive minimal flavaalation occurs if e.g. supersymme-
try is broken at a low scale by a flavour-blind mechanism legdo flavour-universal squark mass
matrices. (A symmetry-based and RG-invariant definitioM&V has been proposed in [7]. For a
recent analysis see Ref. [8].) In our version of naive MF\véeer, we slightly go beyond flavour
universality, as we allow the SUSY-breaking terms of thedtigeneration to be different from those
of the first two generations. In this way we also include thgesaof the widely-studied CMSSM (see
e.g. Refs. [9, 10] for recent studies) and mSUGRA [11-15] ef&dn which renormalisation-group
(RG) effects involving the large top and bottom Yukawa cings destroy the universal boundary
condition imposed at the GUT scale. In such models with Isicdile flavour universality the RG also
induces flavour-violating gluino and neutralino coupliregshe electroweak scale, but their impact
on FCNC transitions like3 — B mixing andb — s+ is small [16, 17] and the naive MFV pattern
essentially stays intact. On the other hand, the univéysalithe flavour-diagonal SUSY-breaking
terms is badly broken at low energies, e.g. the trilineantef the third generatiod; substantially
differs fromA,, ~ A.. We emphasize that no variant of the MFV assumption forbalsfir-diagonal
CP-violating phases. Such phases appead;inthe higgsino mass parametey and the gaugino
mass termd/;, i = 1, 2, 3, which we consequently always treat as complex quanthiegighout our
analysis.

The dominant contribution to the effective coupliﬁg stems from a gluino-squark loop and is de-



picted in Fig. 1. In naive MFV, the corresponding contribattoy ; 77 is yd ;5 with

ZA/ZZ = Y4, 6i(/‘>mdﬂi>mdﬁ)a
5 2a
and ef(u,m%,m%) — 37:m§,u* C’o(mg,m%,m%). )

Herem?2, andm?2 are the mass terms for the left-handed and right-handed-dgwarks of the-th
d di,

generatlon respectlvelyng is the gluino mass and the loop integ(@| is defined in Appendix A.
Accounting for similar contributions from loops with chargs (still neglecting flavour mixing) or
neutralinos we write; = ¢/ + efi + 5;?50. Both terms inczf{i of Eq. (2) contribute to the masses of
down-type quarks. The ratio of the two contributions is

Aizwzei'tanﬂ. 4)
Yd; Vd

A large value oftan 3 can compensate for the loop factgrrenderingA; = O(1). The relation
between the Yukawa coupling, and the physical quark mass;, is therefore modified substantially:

mq,
va(l+Ag) ®)

Several papers have studied the impact\gfon Yukawa unification [4, 6], neutral [18] and charged
Higgs [19] phenomenology.

Yd; =

Later Hamzaoui, Pospelov and Toharia have discovered@if]attas a profound impact on flavour
physics: The down-quark mass matfik; computed fronfszd will be non-diagonal and conversely a

non-diagonal Yukawa couplingf appears in the basis of mass eigenstates [20]. The resBiGNC
couplings of the non-standard neutral Higgs bosHifsand A° are loop-suppressed but involve two
powers oftan 3. Thus the new FCNC couplings may compete in size with the fiad@agonal tree-
level coupling which involves a single power tfn 5 and is of order 1 in the case of the bottom
quark. Importantly, these effects are already highly i@én naive MFV, where only chargino-loops
contribute to the off-diagonal entries §§ which moreover involve the same small CKM elements
as the SM contribution. In our effective theory, the gen@tdDM with Ee in Eq. (2), FCNC
processes proceed through tree diagrams Withor A° exchange. Most spectacular effects occur in
Bgs — (70~ decays, where a priori orders-of-magnitude effects wessipte even in the MSSM
with naive MFV [21]. The dominant Higgs-mediated contributto B(B, ; — ¢*¢~) is proportional

to six powers ofan 3 andB(By s — ¢7¢~) is more sensitive to the largen (5 region of the MSSM
than any other decay rate or cross section. A correlategsisalf3(B;, — ¢*¢~) with the muon
anomalous magnetic moment has been performed in Ref. [28. pfesence Qy‘? in Efd further

leads to a modification of the relation betweﬁji and the CKM elements btan G-enhanced loop
corrections. This feature was studied in Ref. [23] in MFV Madfore the discovery of the Higgs-
mediated FCNC effects As a consequence, the couplings of the charged Higgs bostowio-type
fermions are modified, with phenomenological impacth — 7+v [25] andB*T — D171 [26,27].

B — B mixing plays a special role: The superficially leading citnttion from diagrams with right-
handedb-quark fields vanishes [20], because the two diagrams #ittand A° exchange cancel each
other. Buras et al. have discovered that, despite of a ssgiprefactor ofm,/m;, the analogous
diagrams with one right-handedquark field can sizably diminisB,—B, mixing [28]. This effect is

'Recently, this finite CKM renormalisation has been exteridgtie case of non-minimal flavour violation [24].
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highly correlated with3(B; — ¢*¢~) and today’s upper bound &(B; — ™) from the Tevatron
experiments [29, 30] severely limits the size of the Higgsdiated contribution iB, — B, mixing
[31]. In subsequent papers further contributions such eshtarged-Higgs box diagram &— B
mixing [32] and contributions t@flj involving the electroweak gauge couplings were considgad
34]. A complete list of all one-loop contributionsﬁﬂj for the case of universal SUSY-breaking terms
taking into account all possible CP phases can be found in[B&f The absence of the superficially
dominant contribution rende® — B mixing vulnerable to other subleading corrections prdpael

to other small expansion parameters suchass, v/Mgsysy or the loop factorl /(167%). Any of
these corrections could potentially spoil the canceltaind endanger the correlation found in [28].
The recent symmetry-based analysis of Ref. [34] has redeahb all these subleading corrections
are small and the correlation found in Ref. [31] essentiaslys intact. An important ingredient of
this study are contributions tB — B mixing stemming from loop corrections to the Higgs potdntia
At this point the appropriate definition ofin 3, which is ill-defined in a general 2HDM, had to be
clarified. Loop corrections tB—B mixing from the Higgs potential were also calculated in Ra5)].

In view of the findings of Refs. [34, 35] we neglect all radraticontributions to Higgs self-couplings
and work with the tree-level Higgs potential of the MSSM. Taiger is CP-conserving; we can work
with the usual Higgs mass eigenstates with definite CP quamwmbers (i.e. the CP-odd’ and
the CP-everk’, H°) and all CP-violation discussed in this paper enters thndhg (loop-corrected)
Yukawa sector.

The last three paragraphs have addressed Higgs couplingghtédhanded down-type quarks which
involve a factor ottan  at tree-level. A different type dfan 5-enhanced corrections occurs in Higgs
couplings of the right-handed top-quark field, which arepgapsed by a factor @bt 5 at tree level.

A prominent example is thézs;, H+ coupling entering the charged-Higgs looptin— svy. Super-
symmetric vertex corrections lift theot 3 suppression and the one-loop correction competes with
the tree-level coupling [36, 37]. In the decoupling limisalthese effects can be easily described
by an effective Lagrangiaﬁgffu, which in addition to the first term in Eq. (1) contains an efifee

loop-induced coupling? involving H.

The appearance of then g-enhanced supersymmetric loop correctidnin the denominator of; in

Eg. (5) signals the resummation of this correction to aleosdn perturbation theory. As a drawback,
the effective-field-theory method is only valid fadsysy > v, M 40, Mgo, Mg+. This is unsat-
isfactory, since in supersymmetry one naturally expédts sy ~ v, especially if the electroweak
symmetry is broken radiatively. One needs an unnaturaltéinatg in the Higgs potential to achieve
Msusy > M 40, Mo, Mg+ [35]. After all the widely-studied scenarios with neutraliLSP in-
volve several supersymmetric particles with masses aranddoelowv. Of course, several authors
have discoveredan 3-enhanced loop corrections within diagrammatical ongxloalculations in the
MSSM [38, 39]. Yet only three papers have studied 5-enhanced corrections with their subsequent
resummation beyond th&/gysy > v limit: In Ref. [19] the tan §-enhanced diagrams contributing
to A; have been identified to all orders and have been explicidymaned. The result of Ref. [19]
mimics the form of Eq. (5), buf\; involves squark mass eigenstates and its validity doesssoinae
any hierarchy betweemand Mgysy. The authors of Ref. [33] have calculated Higgs-mediateNEC
processes to one-loop order for arbitrdryysy, but relied on the effective field theory formalism for
the all-order resummation. In Ref. [40] the method of Re®] [Aas been applied to the lepton sector
in an analysis of the muon anomalous magnetic moment.

It is illustrative to consider the extension of the effeetiield-theory formalism to subleading powers
in v2/MZ4y: To this end we must add higher-dimensional coupling<$® involving more H,
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Figure 2: Series of ‘hedgehog diagrams’ contributingrig

fields. The gluino contributions to these new effective dimgs are shown in Fig. 2. Interestingly, in
this simple case one can sum the contributions of these éiempdiagrams’ ton,, to all orders in
v? /M3,y The result has again the form of Eq. (5) withof Eq. (4) replaced as

wherem;; , denote the physical squark masses, i.e. the eigenvalubs sfjtiark mass matrix. Using
1,
this expression in Egs. (4) and (5) reproduces the resutieaflisgrammatic resummation of Ref. [19].

In this paper we derive formulae for the resummationzaf 3-enhanced corrections which are valid
for any value ofMgusy. As in any analysis of radiative corrections this requites full control
over the renormalisation scheme of the parameters in theNMIS®rangian. This can be achieved
with the diagrammatic method of Ref. [19], but is very difficto achieve with the effective-field-
theory formalism, even if one succeeds to resum the serie%/iMszUSY as in Eq. (6). The origin
of this difficulty is readily understood: While resummatitormulae derived fromcgﬁ correspond
to a decoupling scheme for the MSSM parameters, any two ¢f scitemes may differ by terms of
orderv/Msysy and the corresponding resummation formulae look differd@ime plan of the paper
is as follows: In Sect. 2 we first recall the diagrammatic meswation method and then address the
open issues of the case without flavour mixing. In particularclarify the renormalisation scheme of
the sbottom mixing angle and derive analytic expressiong\Mp= Ag for three different schemes.
In Sect. 3 we resum thean #-enhanced loop effects in FCNC processes. Sect. 4 is detotad
analysis oftan g-enhanced corrections to FCNC processes in B physics. Sexttains a numerical
study of the Wilson coefficient§'; andCs and an analysis of novel effects B — ¢ K. Finally we
conclude.

2 Diagrammatic resummation: the flavour-conserving case

We use the conventions of the SUSY Les Houches Accord (SLHA) for the MSSM parameters.
Several of these parameters carry complex phases, but ertiirc phase differences are physical,
CP-violating quantities. We choose a phase convention iotwthe gluino mass parametgfs is real

and positive, so that/; = m;. The phases entering the left-right mixing of squarks aspaaified

by the SLHA and are defined in Appendix A, where also our cotiwas for the loop integrals can
be found. We always work in the Super-CKM basis, in which tlhia¥va matrices are diagonal in
flavour space. For definiteness we consider the quark sealpraod in our discussion of flavour-
diagonal effects we usually quote the results fordlgark. The expressions generalise to the case
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Figure 3:tan $-enhanced self-energy diagrams with (from left to right)igbs, charginos and neu-
tralinos.

of the 7 lepton in a straightforward way, by dropping the gluino cimitions, replacing squarks by
sleptons and changing the hypercharges in the couplings aiigtely.

2.1 The method

There are two potential sourcestah 5-enhanced corrections,

i) the (renormalised) MSSM Lagrangiahand

ii) the transition matrix element1 from which the process of interest is calculated.

We first identify the enhanced corrections at one-loop oetet turn to higher orders (and the re-
summation) afterwards. To address point i) we decompgbBethe usual way a€ = Lyen + Let,
whereL,., is obtained fromZ by replacing bare quantities by renormalised ones 2ndcontains

the counterterms. Loop effects only residedn and the quark mass countertetim,, is a source

of tan 8-enhanced corrections. We write, for the renormalised mass, so that the bare mass reads

ml(,o) = myp + dmy. The mass term id is
ﬁm = — ml()O)ERbL — ml()o)*ELbR = — mbgb — 5mbERbL — (5mZELbR. (7)

Here we have taken into account thiat, must be complex to render, real, if the loops canceled
by dm;, involve complex parameters. We further decompose theeselfgy>(p) as
S(p) = p B (0*) P+ 2 (%) Pr] + () P + S (p) Pr

with ZLR(p2) — (ERL(p2))* ’ (8)

wherePr, p = (1 F v5)/2 andp is the external momentum. If the mass is renormalised ol-slee
if m;, coincides with the pole of the propagator, the countertexaas

Sy = 2L [ ) + S (3] — S (m) ©

The second terix*X(m?) contains pieces proportional ggv sin 3 and is thereforéan s-enhanced
compared to the tree-level termy, = y,v cos 5. These contributions are depicted in Fig. 3 and read:

SEL = myA, with A, = AJ 4+ AY +AY (10)



and
Ag = ;—;m—sm 20, e~ idy . [Bo(mg,ml;l) - Bo(mg,mh)} ) (11)
A%i = - o ZZ: { Tn Yt U* V*, sin 20,
b 1672 cos B £~ | 2¢/2My g m?2 !

[ Bolmgs me,) — Bomgs mi,)|

Mot ~
_ ]\;m U*, Vi, {cos 0, Bo(m Mgz, My, ) + sin? 6, By(m mez th)}} (12)
o~ 1
AXO — Xrn N* N*
b 16+/272 COSﬁ Z "

. |:COS2 0, Bo(m;(gl, ml31) + sin? 6, Bo(m;(gl, mgz)] , (13)

In (13) we have neglected some numerically small contrimsti First, a term proportional tg?
stemming from the bino component of the neutralinos is @dittSecond, a humerically small term
proportional tog? (which moreover is suppressed py/Msusy )? for large Msysy and is therefore
absent in the effective Lagrangian of Eq. (2)) is neglect€early, we have also discarded terms
suppressed by:? /MZ 4y in particulars/i is evaluated fop? = 0. Whereas in the effective theory
approach thean g-enhancement was easily recognisable by the couplit,tan the diagrammatic
treatment it is hidden in the elements of the mixing matri¢ésing the analytic expressions for these
matrices listed in Appendix A, i.e. identities like Eqg. (3G8d Eqgs. (117-120), we can derive for-
mulae for the gluino- and chargino-contributions in whible tan 5-enhancement becomes explicit.
Writing

A = Ktanp for K =§,Y, X" and € = Eg+6§i —i—e?o (14)
we find
5 204 "
Eg = - 3 mgp CO(m§>m[;17ml~)2)7 (15)
& LY g (Dy — |MDy) + - “Mj (Dy —m2 Do) (16)
b = 1672 t 1 2 21 Lo 167r2’u 2 2 ir0 )

whereDg o = Do 2(m Mg, My, mtl,th) (Thetan S-enhancement ozﬁl’fo is already manifest in

Eqg. (13) through the factor/ cos 3 ~ tan (3.) Formulae analogous to Egs. (11-16) are also valid
for the corresponding self-energies of the d- and the skawih the stop and sbottom masses appro-
priately replaced by the corresponding squark masses dirsh®r second generation. Eqgs. (11-16)

generalise the well-known expressions of Ref. [42] to theea complex MSSM parameters.

Different renormalisation schemes correspond to diffeckoices ofL.;, hence the analytic form of
thetan S-enhanced corrections depends on the chosen scheme. Ifnwéowse a numerical value for
my determined from low-energy data, we must apply an on-shieliraction to the supersymmetric
loops as in Eq. (9) (which is the appropriate “decouplingescl”). To leading order itan 3 this
means

= —mypep tan (. an

At this point we recall that the loops constitutiagare finite, just as all othemn G-enhanced loops
appearing in this paper. Therefore all counterterms angba#t quantities discussed are finite as well.

odmy = —El}fL
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We write the bare Yukawa couplings gg) = yp + dyp, Wherey, is the renormalised coupling and
oy is the counterterm. The choice &, fixesdy, through

om
Sy = U—db — —ypep tan G. (18)

The supersymmetric loop effects encoded,ipnter physical observables only througf. Choosing
e.g. a minimal subtraction fa¥m; would remove thean S-enhanced term from Eqg. (18) and there
would be nothing to resum. However, in this scheme the inplitesfor m;, is obtained from the
measured bottom mass by addimge, tan 5. Thus the inferred value af, = my /vy will implicitly
contain thetan $-enhanced corrections, so that physical observables bergeindependent [19].
In a practical application one must also address the rerimatian from ordinary QCD corrections.
Whenever we refer to thelS massmn;, we imply that theVIS prescription is applied to the quark-gluon
loop only, while we always subtract the supersymmetric soop-shell.

Now, are there other sourcestafn 5-enhanced one-loop correctionsgdg,? There are renormalisa-
tion schemes proposed in the literature in which the cotert@rtotan 3 is proportional tatan? 3, so
that Eq. (18) would receive an additional contribution. sSTf@ature is obviously absent for the com-
monly used definition ofan 3 in the DR scheme. Finally the one-loop renormalisation also inwlve
wave function counterterms. Those of the quark fields areaof-enhanced and the wave function
counterterms of the Higgs fields drop out, if the Higgseslgaecur in internal lines of the diagrams.
(These counterterms nevertheless play a role in schemelidh the counterterm tan 3 is derived
from wave function counterterms and counterterms to the.v@his subtlety is absent for tHeR-
definedd tan 5.) The issue ofan 3 renormalisation is thoroughly analysed in Refs. [43—-45%] aas
recently studied for quark flavour physics in the contextef ¢ffective-field-theory method [34, 35].
In our diagrammatic approach, where the issue is somewmnalesi, the topic otan 5 renormalisa-
tion is briefly discussed in Ref. [40] in an application to thaon anomalous magnetic moment. In
conclusion, the only source ofn S-enhanced corrections . is dy, of Eq. (18) unless an inappro-
priate definition oftan 3 is adopted.

Next we turn to the second point mentioned at the beginninthisfsection. In order to identify
tan §-enhanced corrections to a given transition matrix elemdnive must distinguish two cases: In
the first case the leading-order contributionkté has no suppression factor @ft 3 in any coupling.
Examples for such unsuppressed couplings are thos& @nd H° to down-type quarks, thél
coupling to right-handed down-type quarks or any gauge loaypin this situationM can only have

a tan g-enhanced correction if the loop integral involves at lemst inverse power of,, Which
combines withy, « m;tan 3 to a factor oftan 3. The presence of such inverse powersgfis
related to the infrared behaviour @ff for m; — 0. This behaviour can be studied by matchifg
onto an effective matrix elemenit ¢ which is obtained fromM by contracting all lines of particles
heavier thann, to a point [19]. This analysis should not be confused withdffective-field-theory
method described in the Introduction: Here odligusy, v, M 40, Mo, Mg+ > my iS assumed,
with no assumption on the hierarchy betwedgysy andv. The result of Ref. [19] is that no such
tan §-enhanced correction from genuine multi-loop diagramsipacthe first case. The second case
deals with matrix elements1 with an explicitcot S-suppressed coupling (such as tfecoupling to
down-type quarks or thé/ ™ coupling to left-handed down-type quarks) in the leadindear Here
the situation is different, but trivial: An explicit onedp vertex correction lifts the suppression and
this tan S-enhanced correction does not replicate itself in highdew [36, 37].

We now discuss higher orders of the perturbative expansidrilee resummation: While no genuine
multi-loop diagrams give enhanced corrections, there ageloop diagrams involving lower-order
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countertermsiy,. We make they,-dependence of the self-energy explicit by WritiﬁgL(yb). The
Yukawa couplingy, entersEfL(yb) either directly via the quark-squark-higgsino-vertexratirectly
via the shottom mixing angle. Now, let us consider such eeéfrgy diagrams in which one or more
of the couplinggy, are replaced by the countertef,. The mass countertermn,, reads

dmy, = vabyp = — S0 (yp + ). (19)

to all orders of the perturbative expansion and to leadirdgiom tan 3. Let us denote the-th
order contribution tady, by 5yl§"). We can solve Eq. (19) recursively, by express&@ﬁ“) in terms
of 5y£"_1). Effectively 5yl§") is simply computed from the one-loop diagrams contributimg:/*"
including all possible substitutions gf by 5yl§k), k=1,...n— 1. Adapting Eq. (10) and Egs. (14—
16) to account for the desired higher-order terms we write

wRL = ml()O)Ab = yéo)vebsinﬂ. (20)

WheneverZ{fL is linear inyéo), that is if ¢, does not depend Qyﬁo), one can easily determirigy, to
all orders: Noting thay, = m; /v, the one-loop result of Eq. (18) is replaced by

]_ my €y tan G

—_ 21
vg 1+ etan s’ (1)

Sy = —? [ep tan 3 — (€, tan 3)% + (e tan B)* —
d

If we discard the neutralino contribution and taslgeandel;>Zi from Egs. (15) and (16) one indeed finds
€, independent ofy,. There is a shortcut to Eq. (21): Adding, = y,vg to both sides of Eq. (19)
gives

vayy = my — gy vaey tan 3 (22)

which is easily solved foyéo) resulting in the resummation formula of Ref. [19]:

0) _ my 23
Yo va(1+ eptan 3) (23)

The linearity ofeg + efi in y, beyond the decoupling limit appears to contradict the disicun in
the Introduction, since the hedgehog diagrams of Fig. 2asor@ny odd power of,. However, these
additional factors ofy, are implicitly contained in the sbottom mass elgenstaﬁ%\s From this
observation it becomes clear that for the correct resunamati thetan S-enhanced corrections one
must clearly state the renormalisation scheme for the sypenetric parameters. Eq. (23) implies an
on-shell scheme for the sbottom masses meaning hermghatare used as inputs. By contrast, many
supersymmetric analysis use the diagonal elements of tiss matrix My, and theu parameter
(entering the off-diagonal elements) as inputs. In thisesay, enters the problem explicitly via
the mass matrix and Eq. (23) is not correct. Similarly, E®) (@ust also be modified if the sbottom
mixing angled, and the mixing phase, are used as input parameters. These parameters are the
natural choice for applications to collider physics, e&lconce the bottom squarks are discovered
and their properties are to be studied. It is therefore ofostnmportance to control the definition
of 6, in particular if constraints from low-energy data shalldeenbined with collider physics. We
analyse this point in Sect. 2.2.

In summary, wheneveM does not suffer froneot 3 suppression in the leading order, & 3-
enhanced corrections stem fram,. The dominant contributions from gluino and chargino looas
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be resummed to all orders at the Lagrangian level, if an atecqgcheme for the sbottom mass param-
eters is adopted. We stress that the resummed terms aredodthht one can reproduce the resummed
effects from an effective Lagrangian. The effectiyér H(*), b.brA®) andi bz H ™ couplings are
simply obtained by replacing the tree-level Yukawa couphvith yéo) in Eqg. (23). That is, the de-
scription of these couplings by an effective Lagranglaes norequire any assumption on the size of
Msusy: E.g. the use of Eq. (23) also correctly resumstthes-enhanced corrections in high-energy
collider processes, even if the momenta of the particlesiied are of the order af/sysy. Further
the results of Ref. [19] also extend to other couplings inNt&SM Lagrangian which are governed
by ;. Also in the higgsino couplings of the charginos and neuroal the use of Eq. (23) correctly
resums the enhanced corrections, irrespective of the gfzbe momenta and masses involved. The
Feynman rules for these effective couplings are listed ipekmlix C. However, the situation is differ-
ent for acot B-suppressed process: Here the enhanced one-loop canrdefi@nds on the kinematics
of the studied process. For example, the coupling of thedarakModel-like Higgs boson(©) to
fermions involvegan 5-enhanced momentum-dependent one-loop form factors.

2.2 Sbottom mixing and resummation

As an introductory remark, we note that the resummatioreissgimple, if one interchanges the roles
of y, andmy: Choosingdy;, as input will fix dmy, through Eqg. (19), there are no enhanced corrections
beyond one-loop order and any non-linear dependenay,ain y;, does not pose a problem. This
avenue has been pursued in Sect. 2 of Ref. [19]. Yet in anygohenological application we face
the fact that we have precise dataap and not ony,, so that we are stuck with the task to invert
Eqg. (22). We discuss this for three well-motivated schernesiie sbottom mass matrix here:

() Input: mgl,mi; 1, tan 3
If we express the sbottom mixing andglgand Qhasésb in Eq. (11) through our input parame-
ters, using relation (108), the bottom mass\fi cancels and we find the gluino and chargino
contributions tox7*F to be linear iny,. This is the case used to illustrate the resummation in
Eq. (21). If we assume the neutralino contributions to bedmny,, too, we arrive at

O _ _ M 24
Yo T T+ Ay (24)

. . . v V== . . L. .
The chargino contrlbunoEfL’X = ml(,o)Aff is always linear iny,, it is not influenced by our
choice of input parameters since no bottom squarks areviegtolThe neutralino contribution

SALR = ;m® AX in (13) can be rewritten as

4
RL,~0 _ Yvg X’HL * * ~
D, X = 162 Z 3 —2N;ioNpis - Bo(mso,,my, ) (25)
Yog . m%?n AR OATE 2]
— 157 2 NG N} 9Ny 5 sin” 6y < By(m mgo My, ) — Bo(mﬁb,mh)),

where the first line is linear i, but the second line is found to contain terms of third order
and higher iny, after insertion of (108). In the decoupling limifsysy > v, this higher order
terms, which are proportional tan? 8, o< v2/M2;;4y, vanish, and the neutralino contribution
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(ii)

(iii)

is correctly included into (24). Favlsysy ~ v on the other hand, the higher order terms spoil

the proper resummation, because equation (19) cannot\edsahalytically anymore. AAI’:‘O
is small anyway, formula (24), though not entirely correcthis case, still holds to a very good
approximation.

Input: mgl, mi; Oy, Db
Assuming that some day it will be possible to meaglyrandg;, we could take these quantities
ps S0

as our input, instead gf andtan 8. In Egs. (11) and (1377 andAl’f( are directly given as a
function off, andg,. Obviously,, "9 = mI(JO)AZdoes not exhibit any explici,-dependence
in this case, so that no reinsertiondaf, into ZfL’g is possible (it is absorbed into the physical
mixing angle). The neutralino contributiatf™>X" on the other hand is linear i, if we choose
0, as input, and it can be properly resummed now, in contrasige (). The modified relation
betweengéo) andm;, then reads

(0) mp 1-— Ag

Yp =up+oyp=— = =5
b vdl—l—Agi—FA?O

(26)

Note that this scheme does not involve an explisit 3-enhanced counterterm #. The
implicit resummation encoded in a “measured” valuébahust, however, be taken into account
in a proper analysis of the MSSM parameter space: In the-langé limit Egs. (103) and (108)
imply a correlation betweegnéo), 1 and our input parameters:

- _ 2 (0)=
' sin 20, = — % 27)
my —m

That is, in scheme (ii): inherits the large correction from()o), because the produgﬁo)*u is
fixed. Sinceu enters the chargino and neutralino mass matrices, onetsbolve Eq. (27) fog,
use the value iy and repeat the steps iteratively until Egs. (26) and (27%aifciently (i.e.
up to the neglectedot -suppressed correction proportional4g) compatible. As a corollary
we remark that a measuremen'mgm, 6, and . (which can be inferred from chargino or neu-

tralino masses) completely fixegéo)| through Eq. (27) itan ( is large. OnCQy£0)| is known

the coupling strengths od® and H° to bottom quarks are fixedyéo)\ enters the production
cross sections of these particles and cannot be studig8l, i#® decays td quarks at the LHC
because of the largeé background from QCD processes.

Input: m? mz : 11, tan 3

As the méssesRand mixing angles of the SUSY particles are aatuned yet, this set is the
most prominent one because its elements directly appeaeihagrangian. In terms of these
input parameters, the mixing angle can be expressed withetipeof

(0)%

7 ~ 2
e tan 26, = —% (28)
m? —m?
br br

Since AY is proportional tosin 20, = tan 26,/(1/1 + tan2 26,) and in addition the squark
masses appearing in the loop functions have to be repIacm%Lbﬁndng via (106), they,-

dependence aﬁf gets so complicated that (19) cannot be solved analytieadljymore. This
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Figure 4:tan S-enhanced flavour-changing self-energy

problem can be avoided in the following way: In a first appnoaiion, we determlnen2

from (106) using the tree level value fgg. Now we can calculaté\, as a function of the
parameter set (i). In a next step, the resulting modified Wakeoupling (24) can be reinserted
into (106) to get corrected values fm2 - . This procedure has to be repeated until the value of

A, converges. The resummed Yukawa coupling is then given by @#ernatively, we could

calculateAg andA?j iteratively as a function of the input parameters (ii), deti@ing sin 26,
from Eq. (28). In that case, Eq. (26) provides the resummeddwa coupling.

Eg. (24) has the same form as the widely-used relation ba.at%@éandmb valid in the decoupling
limit and quoted in Eq. (5). Therefore we will take parametet (i) as the physical input from now
on.

3 Flavour mixing at large tan 3

In the effective-field-theory approach the resummatiotaaf3-enhanced effects in flavour-changing
transitions is achieved in the same way as in the flavourereimg) case: One calculates loop-induced
couplings ofH,, to quarks, now taking flavour mixing into account. After theggs doublets acquire
their vevs the down-quark mass matrix is diagonalised. énkthsis of quark mass eigenstates we
face flavour-non-diagonal Yukawa couplings, as expecteal general 2HDM [20, 21, 28, 32]. This
method is correct foMsuysy > v, M 40 o m+. In this chapter we extend the resummation:of 3-
enhanced effects to the case of any hierarchy betwidefisy andwv to cover the natural situation
Msusy ~ Mo o g+ ~ v. First, our results allow us to assess the accuracy of theugtiog
limit used in the literature. Second, we access a new fieldcahollate thetan S-enhanced loop
corrections to genuine supersymmetric couplings: Fomaims#, the gluino-quark-squark coupling,
which is flavour-diagonal at tree-level, receives enharfé€dIC loop corrections just as the neutral
Higgs bosonsA® and H do. These effective FCNC couplings of supersymmetric glagiicannot be
studied with the effective-field-theory approach, becahsse particles are treated as heavy and are
integrated out.

Our diagrammatic treatment afin S-enhanced loop corrections can easily be generalised to the
flavour off-diagonal case. In the naive MFV framewoarky 3-enhanced flavour transitions only arise
from self-energies of down-type quarks involving chargsgmark exchange (see Fig. 4). In the case
of d-s-transitions, the stop contribution is suppressed/Jiy;4. Since we neglect the small Yukawa
couplings of up and charm and take degenerate massesafwic squarks, the andé contributions

to FCNC transitions vanish because of a GIM cancellationt the flavour-changing self-energies
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SL bR bL bL bR SL

(1) (2)

Figure 5: Feynman diagrams with flavour-changing self-gynar an external leg.

involving a bottom quark we find

m;eec tan B

Vit s e tan 5 for (i,5) = (3,1),(3,2),(1,3),(2,3).  (29)

SHV) =V
Here the unitarity of the CKM matrix and the mass degenerddyhe@d and ¢ squarks have been
used to factor out the CKM combinatidr;V;;. The epr|C|t expressmn fatc in terms of the stop
mixing-parameters;, ¢, and the chargino mixing matricés, V reads

1 7 Yt s o of id
= iU |2 Vi sin 28, (Bo(ms ,my) = Bo(mgsmy,))
€rc 16772 \/iMW Sinﬂnlz::lmxi m?2 2 m2 S 20¢€ O(mxi mtl) O(mxrin mtg)

—gV, (0052 étBo(m;(ng,mgl) + sin? étBo(mﬁL,m,g) — Bo(mgx, mq)>] , (30)

with m4 denoting the common mass of the left-handed first and secenergtion squarks. If one
wants to expressgc in terms of the SUSY breaking parameters instead, one cathaselations
given in Appendix A to find

y?
€rc =~ Jp- 2A *(Dy — |M2|2D0) 167 2]\/[ <D2 - mthDo - Co) (31)

where Dy o = Dy a(m M, M, mz ,mg,) and Cy = C()(m~:l: Mgk, mg). EQ. (31) makes clear
that e and thus also theanﬂ -enhanced flavour- changlng 'self- energies are directketinto the
SUSY-breaking sector of the Lagrangian. They vanish/if and A; are set to zero. The part ef;
which is proportional tgy? is absent if the left-right mixing of the top squarks is netgel and in
addition universality for the mass terms of the left-handgqdarks is assumed. We next present two
different ways to account for it in practical calculationslav-energy flavour observables. The first
option, explained in Sect. 3.1, is to consider self-enemyactions in external quark legs. The second
possibility, discussed in Sect. 3.2, involves a flavour-d@gonal wave-function renormalisation for
the quark fields, which enters the Feynman rules of the cogplof quarks to SUSY particles and

Higgs fields.

3.1 Flavour-changing self-energies in external legs

Consider the generic situation of a self-energy subdiagream external quark leg of some Feynman
diagram, as displayed in Fig. 5 for the case of an extetrmplark. In flavour-conserving transitions
such self-energies in external legs are truncated, thégdadsenter the S-matrix elements through the
LSZ factor (“external wave function renormalisation”). Wever, if the truncation affects a particle
with a different mass than the external particle, the diegweith the external self-energy can be
treated in the same way as a 1PI vertex correction [46], geavthat the mass difference is much
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Figure 6: Atan g-enhanced contribution tbh — sy from a diagram (upper left) with two one-loop
self-energies in an external line. The cancellation betwtbe flavour-conserving self-energy and
the mass counterterm (sum of upper left and lower left diagdds not exact, but leaves a remnant
effect of order(m;,/Msysy )?, because the self-energy is probed off-shep’at= 0. Likewise the
cancellation among the diagrams on the right-hand sidepgifact.

larger than the self-energy diagram. Despite of tifae 5-enhancement this condition, which reads
my —ms > |Xps| IN Our case, is certainly fulfilled because the self-enéigyis CKM-suppressed by
afactor ofV;,V};. Treating external self-energies as 1P| diagrams makewrigie of the large effects
most obvious. The alternative approach, which truncatesetitenergies and introduces flavour-non-
diagonal wave-function renormalisation, is discusse@dweh Sect. 3.2. Of course, both methods
lead to the same results for physical amplitudes.

For definiteness we consider diagrams with extesralb quarks (Fig. 5). The case ofd transitions
is obtained by obvious replacements. kay = 0 the Feynman amplitudes are given by

rest L + M) RL rest . Ectanf
= S E— —iXg ) = — ViV ————, 32
Ml Ml pz_mg ﬁzo( 12up6 ) Ml t ‘/tbl—'_Ebtan/g ( )
rest Z(p + ms) - RLx rest % €rctan 8
= Ty o —i = . —_— 33
Ma M 2 m? ,ﬁ:mg‘)'e( Y ) = MG ViV T e tan (33)

Here, M®s! stands for the part of the Feynman amplitude correspondirtfet truncated diagram.
The expressions (32) and (33) are of ord¥k.. tan 3). Thus, if a large value ofan 5 compensates
for the smalle., it is possible to get & — s transition without paying the price of a loop suppression.

There is one important physical process for which even diagrwith two self-energies in external
lines must be considered: In— sy the expansion of the diagrams to lowest ordemisy Msy sy
understood in Egs. (32) and (33) gives zero. The diagramstefest for the largean 5 limit are
shown in Fig. 6. The sum of the two diagrams is of or¢ies,/Msy sy )? i tan? 3 times another
loop factor, which is the same order as the leading supergtritmone-loop contribution tb — s+.

It is natural to ask whether the same effect, i.e. the geioaraf tan 5-enhanced — s transitions
via self-energy insertions, also occurs for internal querds. It is important to notice that than (-
enhancement in Egs. (32) and (33) is generated by the fadhiguark propagatori/m, cancels
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a factor ofm, in Z{ZL. A potentiall/m; dependence of some loop integral would originate from the
low momentum regiop? < M2, but we have constructed the mass countert@rm in Section

2.1 in such a way that it subtracts the self-energy inseitidhis momentum region. Therefore we
only need to worry about situations similar 50— s+, in which higher orders ofn,/Mgsy sy are
relevant. However, we are not aware of a meaningful phygicadess in which an internalline is
responsible for & /my, singularity in this way and do not consider this possibifityther.

Before investigating the further consequences oftthes-enhanced flavour transitions, we want to
point out a subtlety of equation (33). Thequark mass which enters the propagator via the equation
of motion is the pole mass ®®. Theb-quark mass appearing B*Z, on the other hand, is tHeS-
massm,;,. However, if QCD-corrections to the diagrams of Fig. 5 aletainto account, additional
contributions add to th&IS-mass inE{ﬁsL to give the pole masml‘jo'e. Therefore thé-quark mass

correctly cancels from Eq. (33). A detailed analysis of feiture can be found in Appendix B.

Now, let us consider thean g-enhanced corrections to thg-d;-W -
4 vertex (see Fig. 7). We apply an on-shell renormalisatiomditeon to
Vi; and cancel the contribution from the self-energy diagrap? at 0
by a countertermdV;;. In this way the renormalisel corresponds to
the CKM matrix measured from low energy datsVe find

U;

oV = — ikAkj7 with
Md; LR M, RL -
— 5 Nt 5 2 . kF]
W, A (V) = mﬁj -mg, mﬁj —my (34)
0 k=3

Figure 7: Generic en-

. Note thatéV;; never involves less powers of the Wolfenstein parameter
hanced correction t¥;;

A thanV;;. The bare CKM matri®/ (©) reads

VO =V 46V =V(1-A) =~ Ve ™. (35)

This shows that the chosen renormalisation condition presehe unitarity of the CKM matrix be-
cause the matrid is anti-hermitian.

From eq. (29) we find that the correctiodg,;, 0V;s, 0V,, anddV, are of orderO (e tan 3) and so
can be comparable in size to the corresponding tree-lewaitiiesV;;. Hence, the situation is the
same as it was for the flavour-conserving self-energiesatid®e2.1: Reinsertion of the counterterms
0V;; into the diagram of Fig. 7 leads to contributions which arefally of higher loop order but also
of higher order irtan 5. To resum these corrections we generalise Eq. (34) to afsid perturbation
theory as

6Vij = =(Vig + 0Vig) - A (V +6V), (36)

which is in complete analogy with eq. (19) for the flavour cangng case. Note that the enhanced
flavour-conserving corrections associated wittare already properly resummed in Eqg. (29) through
the factor of1/(1 + ¢ tan 3). We have two possibilities to deal with Eq. (36). Firstly, wan

expand the RHS order by order, deduce a recursive relativveba the CKM counterterrrﬁ/’ig.")

and 61/2.5.”_1) and perform the resummation explicitly. Secondly, we cad &g to both sides of
Eg. (36) and solve the resulting matrix equation

VO —y —yO . AV O) (37)

2Therefore ouf’ corresponds t& ° of Ref [33].
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for V(O InsertingA,,;(V(?) from Eq. (34) withs A% = S+ from Eq. (29) into Eq. (37) yields

OOy 0 1 [micetanf mierctan §

vO = v, -V, .
K " ik Ttk Tty m?—m% l+etanf  L+eptanf |’

sum overk £ j.

(38)
Neglecting small quark mass ratios and ignoring the tinyemions to the Cabibbo matrix we obtain
the solution

Vud Vus K Vub 1+ e tanﬁ

vO = v, V.. K7Vy]|, with K = . (39)
KVia KVi Vi L+ (e = ero) tan §
We recognise that this amounts to a renormalisation of théengtein parameted,
40 _ 1+ e tan s (40)

1 + (Eb - Epc) tanﬂ )

Possible complex phases can be absorbed by the usual mplofshe top-quark and bottom-quark
fields (with the same phase for the left- and right-handedd)elin order to preserve supersymmetry,
one should then perform the same rephasing also for the stbptettom fields.

Comparing Eq. (39) to results of calculations in effectiieory approaches [21,23,33,34], where the
SUSY particles are integrated out at a scale much highertiieelectroweak scale, we see that the
results are identical in the limit/sysy > pw, as they should be. Yet our result Eq. (39) provides
an explicit resummation of thean §-enhanced flavour-changing effects to all orders in peatioh
theory and is also valid in the case where the SUSY mass-iscsil@ilar to the electroweak scale.

3.2 Renormalisation of the flavour-changing self-energies

The second possibility to deal with flavour changing selgies is to absorb them into wave-function
counterterms. In this approach, no external leg correstimve to be taken into account in the cal-
culation of transition amplitudes. Instead, the effect abdlur-changing self-energies now reside in
the wave-function counterterms, which enter the variougpbings of the quark fields. In particu-
lar, the wave-function counterterms render couplings tvhie flavour-diagonal at tree-level flavour-
changing. Furthermore, this method permits an easy incatipo of the resummethn 5-enhanced
effects into explicit Feynman rules for the MSSM. These Fegn rules are collected in Appendix C
and can be readily implemented into computer programs légnhArts [47, 48]. They include for
example the flavour-violating couplings of gluinos via wduaction counterterms which have been
found by Degrassi, Gambino and Slavich in Ref. [49]. We wek shat these wave-function counter-
terms are indeed enhanced by a factotaf 3 and therefore determine them to all orders in the
perturbative expansion, which has not not been done in R8}. [The scope of Ref. [49] is the cal-
culation of the supersymmetric strong correction® te» s for all values oftan 3, while we are
interested in the leading power tfn § only, albeit to all orders in perturbation theory and witle th
effects of all gauge couplings and of the large Yukawa coggli; andy,.

We next present the flavour changing wave-function cowsreid and reproduce the result for the
renormalised CKM matrix of the previous section: The reraisation of the CKM matrix with
the help of wave-function counterterms has been first stubdieDenner and Sack in Ref. [50] for
the Standard Model, where an on-shell scheme has been chbkahis to say, the wave-function
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counterterms have been defined in a proper way to cancel flafnamging self-energies when one of
the external quarks is put on the mass shell. Later Gambirasgand Madricardo [51] have argued
that this on-shell prescription can lead to gauge-noniamairesults and have given a renormalisation
prescription for the flavour-changing two-point functioatszero external momentum As long

as we neglect the external momenta in the calculation of th8YSself-energy diagrams, there is
no difference between the two approaches and the naiveahssibtraction of flavour changing self-
energies in external quark legs gives gauge invarianttsesohly chirality-flipping self—energieEfer

in the down sector arean 3-enhanced. Therefore only down quark fields have to be reslsed
according to

1 1
d) = <5,-j + 5525) dj 1, dy = <5Z-j + 552}}) dj r (41)
and their wave-function counterterms are anti-hermitian:

L Lx R Rx

ji o

The wave-function renormalisation (41) corresponds to isagntransformation of the down-type
quark fields in flavour space. We will see in the following thiais implies, in combination with
a suitable renormalisation of the CKM matrix, that coupéirgf the Standard-Model particles to one
another are unaffected by our renormalisation. In this waylavour violation occurs in the couplings
of the photon, of theZ® boson, or of the gluon, as required by the decoupling theorem

The rotation of the quark fields in Eq. (41) affects the dowias§g mass terms of the Lagrangian (cf.
Eqg. (7)) as

_ 1 _
Lo = —m{ A pd) + .= — |m) 5, + mg% 2l — 5m)0Z}}| djdy +he.  (43)

where a sum ovey is understood. Subtraction of the flavour changing selfgiae at vanishing
external momentum amounts to the condition

L R
9% 9%

RL B
nhi 4 5 4 5

for 62" with ©E- given in (29). Here the bare massmé?) — g, + dmg, contain thetan (-
enhanced corrections associated with the mass counteréety calculated in section 2.1.

The explicit expressions for the antihermitian one-loopraerterms in our scheme follow directly
from the condition (44) and its complex-conjugate versiie find

525 (0) ERL+m(0)ELR

— fori # j. (45)
2 |m ‘|2_|m Z_)|2
525 (O)ELR_i_mo*EZ@L fori £ 6)
= ori #j.
0
20 mP = m{P

From these formulae it is obvious that the counterteﬁrﬁgﬂ aretan S-enhanced. However, the
strong hierarchy of the quark masses implies ﬂﬁf is always suppressed by a small ratio of masses
whereagiZ/: is not.
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Figure 8: Condition for the resummed counterteirﬁfdi

We want to stress that in the expression ¥gf" in Eq. (29) the momenta of the external quarks
are neglected. As a consequence self-energies in extaragf tines are subtracted by the counter-
termséZé’R only up to terms suppressed by the small ratig /M si75y. Therefore in calculations
where higher order terms in the momentum expansion areaml®ne has to take into account the
corresponding one-particle-reducible diagrams expficne example for such a procesdis» sv.

Up to now we have considered the flavour-changing self-éeeanly at the one-loop level. Are there
also higher loop contributions which aten 3-enhanced? In the flavour-conserving case such con-
tributions stem from insertions of the countertesyy into the self-energy diagrams and are already
included in Eq. (29). To study the new flavour-changing dfféet us now consider self-energy dia-
grams with wave-function counterterrﬁZL anddzR at vertices involving a gluino, a chargino, or a
neutralino. These diagrams generate further COI’]tI’IbSItIIOEf}L (see Fig. 8). The resulting diagrams
are tan §-enhanced and of the same order in the Wolfenstein paramessrthe original flavour
changing chargino diagram. Formula (29) EﬁL is then generalised to all orders in perturbation
theory as

0 0
ERL((;ZZ?’(sZR) V( )* Vtg ) ( )

YA
(0) ;tan 3 — 5 ©) € tan 3. 47

In writing VZ.E.O) we have anticipated that the CKM elements will obtain 5-enhanced counterterms
which then also should be included into the self-energiespl&ingy i and /" in Egs. (45) and
(46) by [t (62%,627) and© (52, 6Z]1) gives us equations for the determination of the wave-
function counterterms which are valid to aII orders in theybative expansion. Again, they can be
solved either order-by-order through explicit resumnratiosimply by solving the coupled equations
for the resummed counterterrﬁs?i?’R obtained by inserting Eq. (47) into Egs. (45) and (46). For

i = d, s we find to leading order im, /my:

% B _5ZZ-%* L erctan B _ (o)« v

= = 48

2 2 l+etang B (48)

§ZE _ 0z __mg, [ exctanf et tan 3 V( ) Vt(o)' (49)
2 2 mpy |1 +etans (14 € tan 3) t

The elements 0z, which do not involve the third generation vanish.

Now we can renormalise the CKM matrix with the help of the remed left-handed wave-function
counterterms, using the prescription of Ref. [50] and r&glg the up-type counterterms:

Zm

On the right-hand side we have again repladéd by Vigf) to properly account for the enhanced
higher-order effects.

6Zk]

(50)
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The resummed CKM counter-terms fixed by this condition dyaetncel the effect of the field renor-
malisation of the down-type quarks in their couplings to ¥Weboson so that only the tree-level

coupling survives. We can now insert Eq. (48) into Eq. (5Q) (a.usingv;.g.o) = Vi; + 6V;) solve
for §V;;. We obtain the same relation betwelf{’ andV;; as found in Eq. (39) with the method of

the previous section. We may now expré@%’R in terms of the physical CKM elements: Inserting
Eqg. (39) into Egs. (48) and (49) gives

6Zblz 622%* EFC tan/B
2 2 tb tll—F(Eb—EFc)taDﬁ ( )
02y _ _SZ§" _ ey, Mas [_Ectan cictan B L+ e tan 5 (52)
2 2 "y [T+gtanf | (14 tanB) | 1+ (e — o) tan B

The renormalisation of the CKM matrix beyond the decouplingt has also been studied in the
second chapter of Ref. [33], where an iterative procedurebeen used to incorporate then (-

enhanced higher-order corrections. We find that our unttarysformations in Egs. (41) and (42) are
formally equivalent to this procedure. Our result in Eq.)(Blthe analytic expression for the limit to
which the iterative calculation of Ref. [33] converges. Gunmg Egs. (51) and (50) and solving for

0
vV reproduces the result of Eq. (39). The counterterms aregiven bydV;; = Vig. ) Vij.

To summarise, in the previous section we fouwad G-enhancedd — s (b — d) transitions from
self-energy insertions into external legs of Feynman diay. In the approach used in this section
these self-energy insertions are absorbed into the wanaifun counterterms.

3.3 Formulation of Feynman rules for the largetan 3 scenario

We are now in a position to study the influence of the §-enhanced flavour transitions on MSSM
vertices by means of the counterterms defined above. Ircpkatj we can give Feynman rules for
the largetan 8 framework in which the enhanced loop corrections are ireduand resummed to all
orders.

First of all, as already stated above, we have chosen a rafisation scheme such that the standard-
model vertices remain unaffected by enhanced correctionthe couplings of quarks to the neutral
gauge bosons, the wave-function counterterms drop out ansnef their antihermiticity. The W
boson couplings are indeed affected by the field renormalisdut the renormalised CKM matrix
is defined such that the coupling is given only by a physicarimalementV;;. As an example, the
coupling of the W to top- and strange-quark reads

L

g 87, > ig
———=~7,Pr | Vig + 0Vis + V, S ) = ———=~,, P Vis. 53
\/5% L< f f 5 \/5% Vi (53)

Since we renormalise only the quark fields and not their qgvarers, we cannot expect that the
SUSY equivalents of standard-model vertices follow the esgrattern. This is inevitable since the
flavour-changing effects which we want to include in our Fagn rules arise from the SUSY-
breaking sector (see Sect. 3). The most striking exampléhferproperty is the misalignment be-
tween the flavour-diagonal quark-gluon vertices and thekgsquark-gluino couplings which receive
flavour-changing contributions. From the unitary transfations in Eq. (41) we can read off e.g.

- - SZE SZE
L D —iV2g,T0; 50 = —iv/2g,Tb% 5% (bL+ 2b53L+TWdL>, (54)
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which implies the existence of a flavour-violating gluinapting to a sbottom and a down- (strange-)
quark via thetan 3-enhanced counterterﬁﬂlﬁi(s). In the approach of section 3.1, these corrections
would arise viaan G-enhanced flavour-changing self-energies in the extewtibin-quark line.

In addition to the gluino couplings, also chargino-, nduta and Higgs-couplings to quarks are
affected bytan G-enhanced corrections. Moreover, the bare CKM factors iiioua flavour-changing
squark couplings (not involving quarks) have to be relatetheir physical counterparts by means
of Eq. (39). We summarise all these effects in explicit Fegnmules for the largean § scenario in
Appendix C. These rules are useful for

e calculations of low-energy processes involving virtualStUparticles and

e calculations in collider physics with external SUSY pddsc

As an example, we give here the result for a flavour-changlomg decay. In the approximation
my/Msusy =~ 0, the decay rate of — b; b is at tree-level

~ 7 as
I'(§g— bib) = 8—7T(m§ — m%i)z (55)

For the flavour-violating decay — b; s, we find

- 2 2 2
- — s R RV o~ | 2R 56
Numerically, this ratio is given by
‘ Crctan ‘2 ViV [ B2 0310 (57)
1+ (ep — €rc) tan th Vs i '

4 Phenomenology: FCNC processes

With the knowledge from the previous chapters one can nowaystioe effects oftan 3-enhanced
SUSY corrections in FCNC processes. It is well known thahaweder the MFV assumption, super-
symmetric contributions to FCNC observables in B physicstmsizeable ifan 3 is large. The most
prominent example is the rare decBy — u*p~, in which the supersymmetric contribution can
largely exceed the Standard-Model rate and can saturaexgerimental bound [21, 22, 32—-34, 39].
In this section we apply the effective Feynman rules for #iigdtan 3 scenario listed in Appendix C
to FCNC processes.

Most importantly, in this scenario flavour-changing tréinsis are no longer mediated exclusively by
W bosons, charged Higgs particles and charginos but alscebyral Higgs particles, gluinos and
neutralinos. For the case of the neutral Higgs bosons,dhtdfas been realised first in the framework
of the effective 2HDM valid forMgsysy > v [20]. With our effective Feynman rules, we can on the
one hand calculate the neutral Higgs contributions to FCNegsses for the casdsysy ~ O(v)
and on the other hand derive contributions from other neuirtaial particles, where we will restrict
the discussion to gluinos and neglect the weakly intergatigutralinos.
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Since all the flavour-violating neutral couplings are getest bytan 3-enhanced flavour-changing
self-energies (or equivalently by the counterterf: and §Z% (i = d,s) from Sect. 3.2), their
numerical importance crucially depends on the paramegtenn (. SinceéZIf} is suppressed by a
small ratio of quark masses, the most important new corigibs are proportional tleﬁ in Eq. (51)
and thus to the parameter combination
€ectan G

1+ (& — €rc) tan 3
It is thus useful to have a first estimate of the size of thispeater. For this purpose, we neglect the
weak contributions te, andeqc, focus on the non-decoupling part of expressions (15) ahyl f(8
eg andeqc and set all the SUSY mass parameters as wdlpand|A;| equal to a single mass scale
Msusy. In this case, the mass dependence drops out and we find

(58)

ye(Msusy)?

|erc tan 3| 3972 tan 3, (59)
- s M.
|(ep — €rc)tan B] = ef tan 3| = w tan 3 (60)
Y
Fortan 8 = 50 and Mgysy = 500 GeV, we find typical numerical values of
yepctan /8‘ ~ 0127 ’(Eb - epc) tan 5’ ~ 05 (61)
Taking i real here the parameter combination in Eq. (58) evaluates to
€rc tan "
~ 0.08, for positive, 62
‘1+(eb—epc)tanﬂ‘ P H (62)
€rc tan )
~ 0.24, for negativeu. 63
1—|—(eb—epc)tanﬁ' g a (63)

Values larger than this fofc and thus for the combination (58) occur|#;| is significantly larger
than the masses of stops and charginos. If one requirésS 3mg; (Wheremy; is an average squark
mass) to avoid colour-breaking minima [52, 58]; tan 3 gets constrained t@ tan 3|max ~ 0.4.
Experimentally, the size aofl; is further limited byB(B — X,v) via thetan 3-enhanced chargino
contribution to this process. However, when the complexsphaf A; is taken into account, this
bound is much weaker [54]. Moreover, this bound fré#iB — X,v) may shift when the gluino
contribution, which a priori is expected to be of ordet tan 3| times the chargino contribution, is
taken into account.

4.1 The effective] AB| = 1 Hamiltonian for large tan 3

Weak|AB| = |AS| = 1 decays are usually described by an effective Hamiltonian

AGF .
Heft = _Wvﬁ,vts Z C;O; + h.c. (64)
In the SM the operator basis for radiative and hadronic B yiecansists of the four quark operators
O1 = (SauPreg)(€s7" Prba) Oy = (SauPrLca) (@7 PrLbg) (65)
O3 = (5a7uPrLba) Y (@57 PLyp) Os = (SaVuPLbs) Y (757" PLao) (66)
q q
Os = (8a7uPrLba) Y (@37 Prag) O6 = (3a7uPrLbp) Y (437" Praa)  (67)

q q
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and the magnetic and chromo-magnetic operators

€ __ . _ _ 9s — — Lvma a
= 1671‘2 77%(30"u PRb)Fw/ Og = 167‘1’2 mb(sa“ T PRb)ij. (68)
In the MSSM with largetan 3 flavour-changing couplings of the neutral Higgs bosons ¢odibwn-
type quarks are generated. For this reason the operataerlmsto be extended to include four quark
operators with scalar, pseudoscalar and tensor structaneely

Or

Of) = (3aPrba)(G3PLas) 0%y = (5aPrbs) (G5 PLY0) (69)
Ofy = (5aPrba) (G5 Prqs) 0%, = (5aPrb3) (43 PRrY0) (70)
Ol = (540" Prba ) (030 Prag) Ofs = (500" Prbg) (30, PRYA)- (71)

Note that the operator®7, ... O}, are not linearly independent far = b or ¢ = s. In theses
cases0?; and O, can be expressed as linear combinations of the remaininguope using Fierz
identities. We have checked that these operators have mibéglimpact on radiative decays. The
same feature was found for hadronic two-body decays in B&l. [The effective Hamiltonian for
|AB| = |AD| = 1 processes can be found from theB| = |AS| = 1 one by the replacement
s —d.

Let us now have a look at SUSY contributions to the Wilson ficiehts of the operator®; andOg:

In the SMO~, g involves a chirality flip in the externalquark leg so that’; 5 is proportional tan,, o

cos 3. Therefore SUSY contributions can ben 5-enhanced with respect to the SM amplitude if the
chirality flip stems from a factor afy, in the loop. At the one loop level the well-known contriburtso
growing with tan 3 are loops with charginos and up-type squarks. In this coraéien also the
diagrams involving a charged Higgs boson and a top quark iaceissed. These contributions are
not tan S-enhanced due to thes G-suppression of the charged-Higgs coupling to the riginicdled
top. Since this coupling has vertex-corrections propogtidosin 3, such diagrams require a different
treatment and are not discussed here. They have been shydiadous authors either in an effective-
field-theory approach [36,37,56,57] or in an explicit tvaab calculation [49]. Here we firstly focus
on the chargino contribution. Using our effective Feynmales we find

1 Ua2Var My 2
Crgot = Le2 Yl W (e £y () — 2 fra(ay
TS s B+ € tan B) agl:Z { Vam { fra(@gex) — ¢ fra(eg, )

—ip; Ua2 Va2 mt

{f1,2(w£1 ) = fia(ay, ;ai)] } - (72)

2 e
it ] o LT
with . .

s; = sin by, c; = cos by, xij = mi/m;. (73)

Again we have assumed that the squarks of the first two gémesaare degenerate in mass and
denoted their common mass by;. Our result differs from the one in [37] only by a factor Af*
(defined in Eq. (39)) in the numerically small up and charneskjgontribution. The stop contribution
remains unaffected because the corrections from the waatidém and the CKM counterterm cancel
each other.

Besides the well-known chargino and charged-Higgs diagrémere are nowan G-enhanced gluino-
shottom diagrams contributing t@; andCs (Fig. 9), which have never been discussed before in the
context of minimal flavour-violation at largen 3. These contributions vanish fadsysy > v, but

can be computed with proper resummation of the enhancedatimms within our framework.
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Figure 9: Gluino and chargino diagrams contributing’ta The photon can couple to any particle
except for the gluino. The contributions €& are found by replacing the photon by a gluon (which
can also couple to the gluino).

Thetan B-enhanced parts read

V3 Crgtutns ctotan 9 N
C?,g _4GF 3m§(mgl — mi) (1 i EZ tan ﬁ) (1 T (EZ — 6;(:) tan ﬁ) <f2(33b1g) - f2($b2§) ) (74)
B gt ctptan
80 7 T 4Gx mg(mgl - mgz) (1+ ¢ tan B) (1 + (¢ — €ic) tan B)
% [Cr (falwg,5) = Folwgy)) + Ca (Falwg,5) — Folo,g)) | (75

The arguments of the loop functions are again giver:hy= mg/mg, the colour factors ar€'p =

4/3 andCy = 3. We remark that the diagram with a gluino and a strange sqodhe loop has been
neglected because its amplitude is suppressed by the stopregk mass. To have a rough estimate
on the size of’7 g ; compared ta’; g 5+ we again set all SUSY mass parameters (includirjgand
|A;|) to the same valué/sugy. In this case we find

Crg
077)~<i

8@ e
15 y2 |1+ (¢ — €fc) tan 3]

Csg
O&ii

_10g7  |efctan |
3 Y7 [T+ (¢ — efo) tan B
(76)
Using our estimates for expression (58) we fipd~ 0.07 andns ~ 0.42 for positive values of: and
n7; ~ 0.2 andns ~ 1.3 for negative values ofi. It follows that the effect of the gluino contribution
on C7 is small (especially for positiver) whereas the contribution t6's can be sizable. Above
we argued that the value ¢f-ctan 3| can be increased up te-ctan 3| ~ 0.4, if we choose large
values for|A4;|. Of course, the size dof'; s ; gets larger for increasing values lef. tan 5|. Note,
however, that’; 5 5+ is proportional to4; and thus the ratigy s, i.e. the relative importance of the
gluino contribution, is essentially unaffected. On theenthand, the gluino contribution grows with
increasing|u| whereas the chargino contribution decreases becauseatiples with the chargino
mass. Therefore for large values |off the gluino contribution becomes more important. We will
perform a more detailed numerical study of the new coefftsi€h ; andCs ; in section 5.

777:' 778:‘

Replacing in 9 the gluino by a neutralino, we fingh -enhanced neutralino contributions to the
(chromo-)magnetic operators. Their analytic expressiauls

V2 ef-tan 8
Cr 0 =— Fe X XR o (25 , Choo=1/eqCH
X 4GF;6m)~(gl my (1+ (e — €tc) tan 3) ™" im 2(5,50) sx0 = 1/ea Crpo

)

(77)
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with the neutralino-quark-squark couplings

/
~ ~ ~ ~ ~ 2 .~ e~ ~
XiLm = \/532?1 (g m2 — %N;ﬂ) - yzgo)Rgz m3 Xﬁb = églR?Qle + Z/ISO) R?le?r
(78)
In our conventioneg; = —1/3 is the charge of the down-type (s)quarks. The bare Yukawplicau

yéo) is determined as explained in section 2.2. We remark thadtérptoductX’* X% | additional

m?
factors oftan 8 from sbottom-mixing and frorryéo) are hidden, but nevertheless we find the neu-
tralino contributions to be numerically small comparedhsit counterparts from chargino and gluino
diagrams.

Another one-loop contribution t0'; s, stemming from virtual neutral Higgs-bosons, has been pre-
sented in [7] in the effective-Lagrangian approach withishimg SUSY CP-phases. In a full dia-
grammatic calculation, we find for these coefficients

cH’
, C&HO = —.
€d

ei.tan m? tan? 3
1+ (e — €ic) tan B 36|1 + € tan 3|2m?,

077]_[0 = —

In the decoupling limit, setting all SUSY phases to zercs tigrees with [7] up to the factdr/e,.
Compared to the other contributions from SM and MSSM pasictorrections from neutral-Higgs
diagrams ta’'; g are at most in the few-percent range.

In the following, let us leave the magnetic and chromomagragerators and discuss the remaining
parts of the effective Hamiltonian. For the QCD-penguinrapasO;_g, we find contributions from
gluino and neutralino loops to be small because of destuatterference of the two occurring inter-
nal squark flavour$ ands. This is a remarkable difference to chargino loops, wheie @iM-like
cancellation is rather inefficient between the up-type dqudue to their very different Yukawa cou-
plings. Furthermore, the usual power-suppresszh%prMszUSY is present and cannot be alleviated by
a factor oftan 3 from the loop since no chirality flip is involved, in contrastOr s.

In the semileptonic deca — X,/*¢~, two semileptonic operators usually denotedbyand O
come into play. Chargino- and charged Higgs-diagrams itoutitng to these operators have been
evaluated in [58] (we refer to this publication for the defon of Og 1) and it has been found that
the corrections to the SM coefficients are small. Due to thd-{ke suppression described above,
we find gluino and neutralino corrections to be even smaller.

The charged leptonic B decays” — (", (¢ = d, s) are dominated by tree-level diagrams with
W boson, but may receive sizable contributions from chatdiggis exchange in the MSSM [25].
The charged Higgs boson couples to a right-haridgdark and (neglecting; andy,) the only effect
of tan §-enhanced corrections stems frash in Eq. (39) ande, tan 5 in the Yukawa coupling in
Eg. (23). The corresponding Feynman rule is given in Eq. X14%e same remark applies to the
other charged-Higgs analysgr— Drv, [26,27].

Their neutral counterparth — (T4~ are loop-mediated, with a dramatic impact of a large value of
tan 3. The phenomenologically most important decay in this ¢l&§s— p* .~ is described by the
effective Hamiltonian

4G
Hett = ——n VitV > Ci0; + h.c. (79)
V2 i=A,S,P
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with the operators

Oa = (57, PLb)(iy" 510 (80)
Os = mp(5PLb) (i) (81)
Op = my(SPLb)(Ivsp).- (82)

At large tan 3, neutral Higgs exchange is known to be dominant since itrscatitree-level in the
effective theory at the electroweak scale [21], contritmitio C's andCp.2 Making use of the flavour-
changing neutral Higgs couplings from Appendix C, we caregalise the results in the literature to
formulae which

e resum alltan S-enhanced mass- and wave-function renormalisation sffect

e contain all possible complex phases from the SUSY brealéatps
and

e do not resort to the decoupling limitlsysy > v.

Since the LHCb detector may soon precisely measureBthe- .~ branching fraction, an im-
proved treatment of the SUSY contribution to this decay irdele now. Withm?2 o0 = = m? %o In the
largetan 3 limit, this Higgs-mediated contribution redds

erctan 8 m,, tan® 3

Co—=—Cp— —
5 P 1+ (e — €tc) tan B (1 + €5 tan 3)(1 4 €, tan §)2m?,

(83)

Heree, is the analogue of, for the muon (see e.g. [34, 40]).

4.2 TheAB = 2 effective Hamiltonian

In order to study the effects ofin 5-enhanced flavour transitions it — B oscillations, we write the
A B = 2 effective Hamiltonian as
G%m?
Hett = — =3 (Vi Vig) Z Ci0; (84)

with ¢ = d, s. The dimension-six operato€3; are

OVEE = (by, PLg) (0" Prg), (85)
01" = (by,PLq)(by* Pry), (86)
OF" = (bPLq)(bPrq), (87)

07l = (bPLq)(bPLq), (88)

03" = (boy Pra)(bo"" Pra) (89)

andOVEE OFEE OSER which are obtained by replacing, by Pg.

3Thetan 3-enhancement was found in a diagrammatic one-loop calonlat Ref. [39].
*If tan 3 is small, Z-penguin and box diagrams become important. & beatributions can be found in Ref. [59].
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The first type of contributions to the Wilson coefficients leé$e operators which we want to consider
are diagrams with neutral Higgs exchange analogous td3the» p*pu~ diagram in the previous
subsection. Various contributions — B mixing have been obtained in the effective theory ap-
proach in Refs. [20, 28, 31-34]. We specifyBg— B, mixing, which involves numerically important
contributions proportional te, [28]. With our Feynman rules we find

CSLL _ _ 16m%m? tan® 3 ' e2.tan? 3 F (90)

\/§GFM5V (14 eptan 8)2 (1 + (e, — €rc) tan B)

LR 32m2mym, tan? |erc tan (|2
02 = — 2 . 3 3 . ‘F‘i‘
V2G M2, |1+ eptan B]° |1 + (€ — €rc) tan f]
) * k% tanﬂ
1 1 _ 2Zd) (eb 6FC 68) 91
< |1+ A=) 1+ eftanf 1)
with ¢ =arg{ectanf (14 (e — erc) tan 3) }. (92)
Up to terms suppressed byn—! 3, we obtain here
2
Fi=— , F-=0 (93)
m%o

The contribution from the operata@?.* is thus important despite its suppressionshy since F_
vanishes at largean 3 [20]. Our result forC4* involves the new term

(e — €rc — €5)tan 8
1+etanf -

r=(1— e2?) (94)
Obviously this correction factar disappears if all parameters are real. It also vanishes gave the
decoupling limit and choose all squark mass terms to be dmpgause in this case we have

€5 — €0, €p — €0 + €rc. (95)

For this reason the-term is absent in [20, 28, 31-34]. Beyond the decouplingf lindoes not vanish
even if we set all SUSY breaking mass terms to the same vakeube the squark masses are split
due to electro-weak symmetry breaking. However, this effetiny for ;. > 0 where the correction
factor1/(1 + ¢, tan 3) to the Yukawa coupling suppresses the off-diagonal eletignt —yéo)*vuﬂ

in the sbottom mass matrix. In this case we have< 0.01. Foru < 0 the off-diagonal element
X; is enhanced and we hayg < 0.1. Significantly larger values far can be achieved if we allow
the squark masses of the third generation to be differemn fifmse of the first two generatiofs.
In this case the new term can be important for mixing-induC&dasymmetries, becau@fLﬂ is
much smaller thanC+¥| (even after loop corrections t6_ in Eq. (93) are included [34]) and the
imaginary part o} in Eq. (91) stems solely from. A benchmark measurement of LHCb will be
ABX(Bs — (J/¢¢)cps) which equalsF0.04 + 0.01 in the SM. In view of the smallness of this SM
prediction the new contribution involving Imshould be taken into consideration. The same remark
applies to the even smaller SM prediction of the CP asymmetilavour-specific decays [46].

With our largetan 5 Feynman rules we have further investigated the contribatio theAB = 2
Hamiltonian from box-diagrams with virtual gluinos and detype squarks depicted in Fig. 10. We

51t should be stressed that this is possible for the rightledrbilinear mass terms but not for the left-handed oneidn t
super-CKM basis one has;, = V@12 V() and the naive MFV hypothesis of diagomaf,, , 2, matrices therefore

impliesmy, 4, oc 1.
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Figure 10: Gluino-box diagrams contributing to thé3 = 2 Hamiltonian. Two further diagrams are
obtained byd0° rotations.

find that contributions ta”{“5, CV# % and C7'}* are always proportional to powers 6£/%, thus
suppressed by, /m;. Contributions taC"' "L andC 4" are proportional tg¢dZ;)?, which is rather
small as discussed at the beginning of Sect. 4, and furthrersuffer from destructive interference
between the& andb contributions. These suppression effects render gluintritoitions to theA B =

2 Hamiltonian numerically negligible compared to other sgpmmetric contributions like e.g. those
from charginos or neutral Higgs bosons.

5 Numerical study of C7 ; and Cg ; and implications for B® — ¢Kj

We have argued in the previous sections that at lexgeJ there can be potentially large contributions
to the coefficients of the (chromo-)magnefi®3 = 1 operators); andOg from SUSY-QCD. In order
to have a clearer picture of this effect, we now present a migalestudy of the Wilson coefficients
C7 andCy and an application to the mixing-induced CP asymm#fy, .

As a first step, we have performed a general scan over the M@SBingeter space and calculated the
absolute values and phases of the various standard-modelugersymmetric contributions to both
Cr andCys. Our ranges for the dimensionful MSSM parameters are gimefab. 1. We vary the
phase of4; betweer) and2x andtan 3 betweerd0 and60. In this section we further takereal and
positive. Only parameter points compatible with the follogvconstraints have been accepted:

e All squark masses are larger th2d0 GeV.
e The lightest supersymmetric particle (LSP) is charge- aidreneutral.

e The experimenta?o bound on the lightest Higgs boson mass is respected.

min (GeV) | max (GeV)
MQL s Mugs Mdp, 250 1000
| A, | A 100 1000
wy, My, My 200 1000
Ms 300 1000
m 40 200 1000

Table 1: Scan ranges used for massive MSSM parameters.
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Figure 11: Magnitudes of chargino and gluino contributitm€’; (usysy) andCs (ususy) SCanned over
the MSSM parameter space.

e B(B — X,v) is in the experimentalo range.

For the last constraint3(B — X,v) has been calculated according to Eq. (20) of Ref. [60]. This
results in a severe limitation for large values|df| since B(B — Xv) is dominated byC7, which
receives substantial SUSY corrections if bath| andtan 3 are large [61]. In view of this fact, the
question arises how a complek should be treated. It is often possible to fine-tune its phase
such a way that the sum of a very large SUSY correctio@"t@nd the standard model value is still
compatible with the measurements®fB — X,v). We have decided to consider such a fine-tuning
as unnatural and thus impose another constraint on our stais.p

e We reject all points yielding a SUSY correctiofi’?VSY(my)| > |CM(mw )| ~ 0.22

The results of the scan are depicted in Figs. 11 and 12. Tharpkig. 11 is a comparison of the
numerical importance of the well-known chargino contrims C7 g 5+ (1susy) On the one hand and
the new gluino contributiorC’; s 5(ususy) ON the other hand. We show the absolute values of these
(complex) Wilson coefficients. The picture confirms our rowstimate in Eq. (76), i.e. it shows
that the gluino contribution t@’; is accidentally suppressed, whereas it is enhanced'f@and can
yield sizeable corrections, especially for large valuef@f The different colours of the scan points
correspond to different ranges of values fioas indicated in the picture legend.

Next, in Fig. 12 we have plotted for each point in the paramgpace the absolute values and phases
of C7(my,) and Cg(my), including the SM and charged-Higgs contributions as weltree tan -
enhanced chargino contributions. The abscissa alwayssepts our new value, taking into account
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Figure 12: Magnitudes and phaseg&f(m;) andCs(m;) scanned over the MSSM parameter space.
The meaning of the colours is the same as in Fig. 11. For fudbils see text.

also the gluino contributions from Egs. (74) and (75), while ordinate represents the corresponding
“old” value without any gluino-squark diagrams. In this wthe deviation from the diagonal indicates
the relative size of the new contribution. In the Standardi®idoth coefficients are negative, we have
plot herearg(—C7 g) in order to center the phase plots around the origin.

We can see that the gluino-squark contributions do not cstuseg modifications af';(m;,), however
they can have a strong impact 6)(m;,) for large values of.. This confirms again the result of our
estimate in from section 4.1. The reason for the dependehcg (en;) on p is the experimental
constraint fromB(B — X,v). The value ofu determines the mass of the higgsino component of
the charginos. If: is small, the higgsino is light and gives a potentially lacgatribution toC(my)
which is only compatible with data o8(B — X,v) if A; is rather small and the stops are rather
heavy. As discussed above, this reduces in turn the valgg,db which the gluino contributions to
the magnetic operators are proportional. Conversely, iff large, the higgsino is heavy and larger
values of| A4;| ande.c are possible. This feature is illustrated in Fig. 13 whereploé |Cs(my,)| over

MQy,» Mug, Md, | 600 GeV || Ay | —600 GeV
u 800 GeV || m4o0 | 350 GeV
M, 300 GeV || My | 400 GeV
Ms 500 GeV || ¢a, 3r/2
tan G 50

Table 2: Parameter point used for the numerical analység@f.,) in Fig. 13 andSyk in Fig. 14.
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Figure 13:|Cs(my)| as a function of 4;| for the parameter point of Tab. 2: full result (solid) and
result without the gluino contribution (dashed).

|A;| while fixing the other MSSM parameters to the values givenah.2 and applying the same
constraints as above. We see that a wide range of valueoveeallfor| A;| (this range corresponds
to the plot range) and that the importance of the gluino-dqaantributions tgdCs(m;)| grows with

| Ayl

Our finding affects some important low-energy observablesivdepend od’s(m;). As an example,
we have estimated the mixing-induced CP asymmslyy, of the FCNC decay3’ — ¢Kg. This
decay is generated by — s35s QCD penguins and can thus arise from the operé&gmwith the
gluon coupling toss. Here we only want to give a qualitative picture of the impade of the new
contribution to the coefficient ofg. Therefore we have calculated the matrix element only in the
leading-order of QCD factorisation [62,63], i.e. droppiigAqcp/ms) andO(a,) corrections. Only
the tan 3-enhanced chargino and gluino contributionsCig(m,,) are taken into account and there
sum is denoted by’ *’. The result presented here is therefore not to be seen asisepgeiantitative
prediction. A more detailed study including next-to-leagliorder effects will be performed in an
upcoming publication.

For the moment, we will follow the analysis of Refs. [64] a®&] and write
Asis = (0Ks|Heii| BY) = Agge, [1+ agrese’™ + (b + Ujres€)CR T (my)] - (96)

for the B — ¢K s decay amplitude and,, as the CP-conjugat8’ decay amplitude. We remark
that the complex conjugation 6t is missing in Ref. [65]. With the standard definition

Aok = —e 1P —j‘“{s (97)
$Ks
the mixing-induced CP asymmetry reads
2Im(A
Sprs = 2Im(Agxs) (98)

L+ [Aprgl?
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Figure 14: 5, as a function of A;| at the parameter point of Tab. 2: full result (solid) and hesu
without the gluino contribution (dashed). The shaded aepeesents the experimentat range and
the dotted line is the Standard-Model value.

In this section we have not considered possible new-physiegibutions to the phasgs of B—B
mixing, which are necessarily small in our naive MFV scemakiVe have found agreement with the
ngmerical values ofi ;- andbg,. in Ref. [64] and hgve useld ;.. ~ Vi Vil / IV Ve b;KS. In
Fig. 14 we plotSy, versus|A;| for the parameter point of Tab. 2. We can see a large impatieof t
gluino-squark contribution o6/ (my), especially for largeA,|.

6 Conclusions

This paper addresses the MSSM for large valuesinfs. We have considered a version of Minimal
Flavour Violation (MFV) in which all elementary coupling$meutral bosons to (s)quarks are flavour-
diagonal and the flavour structuresidf, charged-Higgs and chargino couplings are governed by the
CKM matrix. Complex phases of flavour-conserving paranselige the trilinear SUSY-breaking
term A, are consistently included in our results. It is well-knovattloop suppression factors can
be compensated by a factor &fn 3, so thattan S-enhanced loop diagrams must be resummed to
all orders in perturbation theory [4-6, 19, 23, 36, 40]. Rerttan §-enhanced loop-induced FCNC
couplings of neutral Higgs bosons lead to a plethora of @stimg effects inB physics, which can

be probed with current data frod factories and the Tevatron [7, 20-22, 28, 31-34, 66]. The sub
ject is usually treated with the help of an effective fielddhe a general two-Higgs-doublet model.
This model is found by integrating out the genuine supersgtrimparticles and is therefore valid
for Msysy > v, M 40 go g+. In this paper we derive resummation formulae which do nsta®
any hierarchy between/sysy, the electroweak scakeand the Higgs masses. We use the diagram-
matic resummation developed in Ref. [19] and extend the odeth the case of flavour-changing
interactions.

As a first result we derive the dependence of the resummaiiomila on the renormalisation scheme
of the MSSM parameters. In particular we find that the famiigporession of Eq. (24) is modified if
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the shottom mixing anglé, is used as input. This result is useful if high-collider physics is studied

in conjunction with low-energy data from® physics. While the focus of largem 5 collider physics
has been on Higgs physics so far [18, 19, 67, 68], our resufhigethe correct treatment ofn 5-
enhanced effects in production and decay of bottom squailesthen resuman 5-enhanced loop
corrections to flavour-changing processes for arbitralyesof the supersymmetric particle masses.
We find that the renormalisation of CKM elements and the lomliced neutral-Higgs couplings to
quarks have the same form as in the decoupling liMit;sy > v, M 40 go g+, but the loop-induced
couplings depend on the supersymmetric parameters in exafiff way. As novel results we find
tan §-enhanced loop-induced couplings of gluinos and neutraland determine the analogous cor-
rections to chargino couplings. These results permit thaysbf tan S-enhanced corrections to pro-
cesses involving a decoupling supersymmetric loop. Sineset processes vanish flsysy — oo,
they cannot be studied with the effective-field-theory rodtemployed in Refs. [7, 20,21, 28,31-34].
Other applications are flavour-changing processes withrgdinal states, which may be a topic for
the ILC. All new FCNC couplings share a feature which was tbtor the flavour-conserving Higgs
couplings to quarks in Ref. [19]: The resummiech 3-enhanced effects can be absorbed into judi-
ciously chosen counterterms. Therefore they can be viewedfectivelocal couplings, irrespective
of the hierarchy between/sysy andwv. We exploit this feature to derive effective Feynman rules
(collected in Appendix C) for all affected MSSM couplings.owever,tan G-enhanced corrections
to suppressed tree-level couplings of order 3 are non-local and involve process-dependent form
factors.

We have further performed an exhaustive phenomenologiedysis of FCNC processes Bphysics.
The new gluino-squark loop contributions are negligible Bo- B mixing and are small ih — s,
where they are of similar size as the non-enhanced two-loogributions [49]. The latter feature
stems from an accidental numerical suppression factoriMttison coefficienC';. This suppression
is absent inC's: Here the gluino-squark loop can contribute as much as the/krchargino-squark
diagram. We have studied the impact on the mixing-inducedsymmetryS; . in the decayB,; —
$Ks. The result in Fig. 14 complies witB(B — X,v) and the experimental lower bounds on the
masses of sparticles and the lightest Higgs boson. SinceS®\WVHiggs bosons are involved, the size
of Syk is uncorrelated witl3(Bs; — ™). Therefore tighter future bounds on the latter quantity
can be evaded by increasing o without suppressing,; ;. We have further generalised the known
neutral-Higgs mediated contributions B, — "~ and B, — B, mixing to the case of arbitrary
Msysy. Our more accurate expression #8(B; — p+u~) is especially useful once LHCb measures
this branching fraction in excess of the SM prediction. Fynae have identified a new contribution
to B, — B, mixing: The parameter in Eq. (94) can alter the phase of thg — B, mixing amplitude
and may affect the mixing-induced CP asymmetnBin— J/vy¢.
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A Conventions

Throughout this paper, our notation for SUSY paramete&tigte masses and mixing matrices fol-
lows the conventions of the SLHA [41]. In Sect. A.1 we extelned ELHA to accommodate complex
phases in the squark mass matrices. In Sect. A.2 we givecilpression for certain combinations
of elements of the chargino mixing matrices. Sect. A.3 lisésloop functions entering our results.

A.1 Squark mixing

In the naive MFV scenario the squark mass-matrices are iam® x 2-matrices. For top- and
bottom-squarks they can be expressed in the Basisjz) with ¢ = ¢, b as

2
2 m: Xq
vi= (3 ) 9
R
The diagonal elements can be chosen real and are given by
mgL :ﬁléL + mg + (Tg’ — Qq sin? HW)m2Z cos 203, (100)
méR :ﬁlgR + mg + Qq sin? @yym? cos 203. (101)

Neglecting terms proportional to the smajlin the off-diagonal elements we obtain
X7 = miA;j, (202)
X; = —ylgo)*vu,u. (203)

The mass eigenstatgs, are related to the weak eigenstates via
(d1,3)" = R (4, dr)" - (104)
with a unitary matrix? which diagonalises the mass matrix:

RIMZRT = diag(mZ,,m2,), (105)

1
m3, =5 (3, +mE, =\ Jm, —m2 )2+ 41x,2) (106)

If the diagonal elements of the mass matrix are chosen fealmixing matrix contains only one
physical phase and can thus be parameterised as

- ) ind et
Fa_ ( cos 04 - sin e ‘Z>’ (107)

—sinf. e 7]
sinf,e” "% cosf,

i.e. by two real parameters, the mixing—anélpand the phasé»q. In practical calculations where
squarks are involved, elements of the mixing matrices appeae Feynman rules. One then has the
choice either to considél, andg, as input parameters or to express them by means of the relatio

2X,

2 2
mag, — Mg,

e sin 2§q = (108)
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that can be derived from eq. (105). To give separate rekaujonéq and <;~3q one has to specify the

allowed range for both parameters. Choosipg [0, 7/4] and¢, € [0, 27) for example results in
2X; ~ 2X;

27(]2 ) Pq = arg (ﬁ) . (109)

Mg, — Mg,

sin 20, =
q1 q2

Constrainingéq to this interval amounts to defining (¢2) as the eigenstate which is predominantly
left-handed (right-handed).

We emphasize that in the shottom mass-matrix, we have defieeaff-diagonal element’; in terms

of the Yukawa coupling;lgo) instead of the bottom mass. This parameterisation is vaiidpective of
the renormalisation scheme used for the 5-enhanced corrections ta,. In practical calculations,

one can use one of the resummation formulae given in secticio Zelateylgo) to the measured bottom
mass. The corresponding correctionsyrtbin the diagonal elements of the sbottom mass-matrix are
negligible sincen; < mg, ,m; -

A.2 Chargino mixing

In our conventions the chargino mass-matrix is given by

L M2 \/iMW sin ﬂ
Msge = <\/§MW cos 3 p . (110)
We define the biunitary transformation which brings it intagbnal form as

R T

UMz VT = dlag(mﬁ[,m%g[). (111)

The matriced/ andV can be determined by diagonalising the matrlﬁé%i/\/l%i andMgiM;i.
In Feynman amplitudes for diagrams with chirality flippingpagators only certain combinations of
matrix-elements ot/ andV appear. These combinations can be expressed as

Mt My — m—x p* ¥ M~+ Sin M-+ cos 3 et?

UV = 5 5 . UnVig = V2My — 3 5 ; (112)
ma, — miy m_p —M_y
X1 X2 X1 X2
- Mot ft — Moz M3 e o M=+ cos B + mx sin 3 e™¥
UiaVig = —L—5—*2 . UnVip = V2My —2 3 — ; (113)
m~i - ’I’)’LNi m~i - m~i
X1 X2 X1 X2
- - Mt p* eV — mesr My - m~z+ cos B e + m_x sin 3
Uz Vor = — 2 2X2 , UnVag = —V2My —2 2 2 = ;o (114)
m2, —m?, m2, —m?,
X1 X2 X1 2
me+ M3 e —m_xpu M+ sin 3 ¥ + m+ cos 3
~ X: 2 X ~ X X
UgVog = ——; 2, UpVa = —V2My— 3 o (115)
m2, —m=, m2, —m?*,
X1 2 X1 2
with

e = (Map — My sin 25)/(mﬁtmg§) (116)
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For largetan § the cos G-terms can be neglected and the above expressions reduce to

2 2 .
-~ My Mg |l -~ \/iMwmﬁ sin 3
UnVi = C— 5 Up1Vig = 5 R (117)
=+ m_, —m-y mZ_, —IT_y4
X1 X1 X2 X1 X3
2 M. 2 .
~ ~ oo Mg - | M| ~ o~ My \2Mypsin
UiaViz = - 5 UipVi1 = S 7> (118)
m~+ m_, —m_y m~+ m_, —m_y
X1 X1 X2 X1 X1 X2
2 2 .
-~ ~ My ul* — mﬁz - \/iMWm)zg[ sin 3
Ua1Vo1 = C—3 5 UaVag = — 5 R— (119)
=+ m_, —m-y m=_, —I_y4
X2 X1 X2 X1 X2
M2‘2 - mzi .
~  ~ 7 | b% ~  ~ o V2My Mysin 3
UxpVag = — 5 UxpVoy = — C— - (120)
m~+ m_, —Mm_y M-+ m_, —Mm_y
X2 X1 X2 X2 X1 X2

A.3 Loop functions

In the calculation of quark self-energies with internal SU&rticles, we use the scalar integrals

(2mp)*4 / d'q
B - 121
obmm) = | @) —md) N
(2mp)*4 / d'q
G = 122
otz 1) = | @ =@ = )@ — D) 422
(2mp)*4 / d'q
D - 123
o) = | @ - e

wherey is the renormalisation scale. This corresponds to the kvellvn Passarino-Veltman notation
with vanishing external momenta. Besides, we use the fomcti

(2mp)A—4 q* dq 2
im? / (> —m3)(¢> —m3)(¢> —m3)(¢> —m3) (124)

DZ(m17m27m37m4) -

Explicit expressions for these integrals read

2 m2 m m
Bg(ml,mg):m—’m—i—log@r—i—l—logﬂ—é—i—ﬁlogm—; (125)
- 2 —m 2
m2 m?2 m2 m?
Co(m1, ma, m3) = : log —5 + : log — (126)
(mi —m3)(m3 —m3) ~m3  (mi—-m3)(m3 —m3) ~ mj3
2 2
my my
Do, may s, Ma) = (g g — md) (g — ) g T
2 2 2 2
m3 mi My mi
log — + log — (227)
(m3 —m3)(m3 —m3)(m3 —m3) ~m3  (mi—m7)(mi —m3)(mj —m3) ~ mj
2
m
Dy (my, ma,m3, my) = 2 log —5+
(m3 —m3)(m3 —m3)(m3 —m3) —~ m3
ma m?2 mi m?2
: log _é + N2 . N2 5y log _é (128)

(m3 —m3)(m3 —m3)(m3 —mj) m3y  (mi—mi)(mj —m3)(mi —m3) my

The divergence irB, always drops out when we sum over the internal squarks argirgzsu
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Figure 15: QCD corrections to the self-eneigf}” (left) and the bottom mass,, (right)

In our expressions for the Wilson coefficierdfs s, we use the loop functions

5—Tx z(3z —2)

fi(z) :6(x ~1y + 3z = 1) log z, (129)
fa(z) :2(2 i_ 1)2 @ fl)?’ log z, (130)
fola) e T o (131)

2 —1) 2(x—1)2

B QCD corrections to flavour-changing self-energies

Here we want to discuss the issue of the bottom mass appaarcgculations following the ap-
proach of section 3.1. In that section, we have introdueed’-enhanced flavour-mixing via flavour-
changing self—energieSlﬁL in external legs. As a consequence the quark pole m‘ru§§'§ enters the

resulting expression through the Dirac equatjén= mP*®. However, as we will show in this sec-

tion, QCD corrections add in such a way that the final restésdwt depend om?**® but only on the

MS-massm,.

To see this we consider an effective theoryiat- O(my) where the SUSY-particles are integrated
out. The self—energyﬁlﬁL then appears as Wilson coefficient of the (on-shell vanigtoperatob Py, s.
Comparing QCD corrections to this operator to QCD correstito the bottom mass;, (figure 15)
we find

S V) _ 2 w)

= 132
o o (132)

wherep denotes the external momentum. Therefore the Wilson casffiE/*> and theMS-massm;,
renormalise the same way. To make the behaviour under ratisation explicit we write

SEL — my A (133)

where nowA is renormalisation scale independent (note the analogyetdéfinitions (10), (14) and
(29) of ¢, anderc which are thus renormalisation scale independent).

Now we calculate QCD corrections to the diagrams in figure &inythe parameterisation (133) for
ZbR;L and neglecting the s-quark mass the Feynman amplitudesdaliagrams in figure 5 read

i(p +
MWP = pgest. Lj mg) (—iSph) = — M- A (134)
pT =My ly—o
M = e, p"’z_mQ p oI = M AT (135)
S :mb b




38

SL bR bL bL bR bR bL SL bR bL bR bL
(1c) (1d)

Figure 16: QCD corrections to diagram (1) in figure 5

Since we want to perform a calculation up to orderin the effective theory we have to determide
from two-loop matching at the SUSY scale and we make thisigikply writing

A=A0 4 AW, (136)

whereA(®) containsO(«a) QCD-corrections. The one-loop correctionsh®, and M, in the effec-
tive theory are given in Figs. 16 and 17, respectively, wittychms (1b) and (2b) taking into account
the counterterm to the Wilson coefficie?jst = my A. As a consequence of (132), the contributions
of (1a) and (1c) and of (1b) and (1d) cancel pairwise so treaeipression foM; in (134) still holds

at one loop withd = A© + A instead ofA = A(). For the contributions of (2a) and (2b) we find
with help of (132)

2a i(p+ms) 1 R« . 327 (p)
MEY = g SEER (Lm0 g)| a0 gl a)
s p=my, b p=mh®
M = g 07 < e a0 S @
p —m _____pole mpoe
S p my, b
Adding these to (135) one gets
. A(O)* A(l)*
Mo = MP + MZY + MPD = Mt e (mb +my s + 50 (0) ympoe 00
b )
(139)
Plugging in
mgole — EbQCD (p)‘p_ et S (140)
_mb
and dropping terms of ordé?(a?) we get the final result
My = MESL(AO 1 Ay = pqlest. g (141)

which now does not depend on*"® anymore.
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(2b)

Figure 17: QCD corrections to diagram (2) in figure 5

Applying this result to our case by replacingin (141) throughsiL via (133) and (29) we find
(33). Since (29) is linear imn;, the parameterisation (133) is in this case quite naturadhemone
considers a more genergfi- which is no longer linear imn, (for example in the generic MSSM),

the parameted depends omn,, via (133) but in any case it does not dependmj‘?'e.

C Feynmanrules

In this appendix, we explain hovan 3-enhanced loop corrections can be incorporated into ealcul
tions in the MSSM with naive MFV by simple modifications of tReynman rules. The resulting

modified rules are valid beyond the decoupling limit and rédeinput scheme (i) for the sbottom

parameters specified in section 2.1. They can also be uspdiimesses with external SUSY particles.
The modifications, which can easily be implemented into aatenpprograms like FeynArts, are given
as follows:

(i) Express the Feynman rules in terms of the down-type Ywakesuplingsy,, and replace them
according to relation (24) by

(0) Md;
. = 142
Ydi 7 Ya, va(1l + € tan ) (142)

It should be stressed that the same replacement has to loenpedf for the Yukawa coupling
appearing in the sbottom mass matix; in (99) before determining the mixing angle via
(108). In case one wants to rely on input scheme (iii) thetsbotmixing matrix has to be
calculated iteratively as described in section 2.2.

(i) Replace CKM-elements involving the third quark gertena according to

B 1+ e tan s
1+ (ep — €rc) tan 3
B 1+ ¢ tan 3
1+ (e —eho)tan g ib

Vii (i=d,s) (143)

Vi — V¥

Vi — VA0 (i = u,c). (144)

All other CKM-elements remain unchanged. Theg appearing after these replacements corre-
spond to the physical ones which can be measured frorfithe;d;-vertex.

(iii) This last rule concerns vertices involving down-typaarks. Into these one has to include the
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flavour changing wavefunction counterterms

5ZbL €rc tan /8 ((])
L= — Ve 145
2 1+ ¢ tan th i (145)
5Zlf';-z m; €rc tan €pc tan 8 (0)
i Vs 146
2 my [1+etanB 14 € tanf ViV (146)

for i = d,s. This leads to additional flavour changing vertices and siocelly cancels the
corrections from rule (ii).

If one uses our Feynman rulesn 3-enhanced loop corrections of the fofatan 5)" are automati-
cally resumed to all orders. There is one exception: Propeex-corrections to thean 3-suppressed
hOd'd’- and H*d} u’,-vertices and to the corresponding Goldstone-boson esrtd@n not be ac-
counted for by this method.

As mentioned above, additional flavour changing verticesganerated by replacement rule (iii) in
the case of external down-quarks. In the following we givpliek Feynman rules for these vertices,
suppressing therein colour indices of (s)quarks. Repeaticks are not summed over.

di _L.
> S V2
d;

with 5 = (cosa, —sina,isin 3, —icos 3) for S°= (H° n° A% G")

d
S+ _ . . 0Z (o)
> - i€§ yu, Vi PL + i€, <y§8> Vil =) Vj-> Pr  (148)

with €7 = (cosfB,sin ) and 5}% = (sin 3, — cos 3) for St =(H",G") (149)

8Z; 6zt
5 (5]‘@'2/6(8)“‘ Ly - yff”) P

+(a5)* <5jiy§8) S - Sty )PR] (147)

dz' . SUGTrx SUiTrx
\q—ﬁ Z‘/ji (yu]‘Rsé Vina — gRs{ m1> P,
. 7 . DU 77 0)*y (0 5213 0)*
(e + 1R Una (y((il) VJ(Z ) + TJ Z/C(lj) Vii | Pr (150)
" \,_,;
Xm . * NdN* ~d~* it

P VSO [ (o) R8T — oRAT5 ) P+ R Vo P (151)

dy -
J
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- —iV/2g,T" (152)

SZEN 52BN
(5]'2' + —2 RsiPL — (5]" + —2 RséPR

_ 5zk ~i; (9~ ¥y 7ds 7

d;

- 5z
J —i| 8+ 2J

V2

(0)x 5dj 77
Y= R
3

1 5 N7
g Rsé ml + ydj s14VYm3

Pg (153)

Occasionally, the flavour-changing counterterms have txpécitly inserted into external or internal
quark lines. In these cases, they cancel insertiortsuofi-enhanced flavour-changing self-energies
up to corrections which are suppressed by at least one pdwey/d/susy. The Feynman rule reads

—1 — Py,
d; 1+e¢tan8 2 l+etanfB 2
R\
)
i Pr. (154)
1+etanB 2 1+6;tanﬂ 2

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Muon G-2 Collaboration, G. W. Bennet. al, Final report of the muon E821 anomalous
magnetic moment measurement at BRhys. RevD73(2006) 072003,hep- ex/ 0602035].

M. Davier: Measurement of the Cross Sectione™ — 77~ (FSR) from Threshold to 4 GeV
Using Radiative Return with BaBaralk at “Tau’08”, Novosibirsk, Russia, September 22-25,
2008 htt p: //tau08. i np. nsk. su/ t al ks/ 24/ Davi er . ppt .

T. Banks,Supersymmetry and the Quark Mass Mathixicl. PhysB303(1988) 172.

L. J. Hall, R. Rattazzi, and U. Saridhe Top quark mass in supersymmetric SO(10) unification
Phys. RevD50(1994) 7048—7065hep- ph/ 9306309].

R. Hempfling,Yukawa coupling unification with supersymmetric threstaldections Phys.
Rev.D49(1994) 6168-6172.

M. S. Carena, M. Olechowski, S. Pokorski, and C. E. M. WagBlectroweak symmetry
breaking and bottom - top Yukawa unificatidfucl. PhysB426(1994) 269-300,
[hep- ph/ 9402253].

G. D’Ambrosio, G. F. Giudice, G. Isidori, and A. Strumidjnimal flavour violation: An
effective field theory approachlucl. PhysB645(2002) 155-187,Hep- ph/ 02070386].

G. Colangelo, E. Nikolidakis, and C. Smit8upersymmetric models with minimal flavour
violation and their runningEur. Phys. JC59 (2009) 75-98,0807. 0801].



42

[9] S. Heinemeyer, X. Miao, S. Su, and G. WeigleByPhysics Observables and Electroweak
Precision Data in the CMSSM, mGMSB and mAMS®BEP 08 (2008) 087, 0805. 2359].

[10] O. Buchmuelleet. al, Prediction for the Lightest Higgs Boson Mass in the CMSSMgusi
Indirect Experimental Constraint®hys. LettB657(2007) 87-94,(0707. 3447].

[11] H. P. Nilles,Dynamically Broken Supergravity and the Hierarchy Prohl&hys. LettB115
(1982) 193.

[12] A. H. Chamseddine, R. L. Arnowitt, and P. Nattgcally Supersymmetric Grand Unification
Phys. Rev. Letd9 (1982) 970.

[13] R. Barbieri, S. Ferrara, and C. A. Sav@auge Models with Spontaneously Broken Local
SupersymmetrPhys. LettB119(1982) 343.

[14] L. J. Hall, J. D. Lykken, and S. Weinber§upergravity as the Messenger of Supersymmetry
Breaking Phys. RevD27 (1983) 2359-2378.

[15] S. K. Soni and H. A. Weldomnalysis of the Supersymmetry Breaking Inducedby 1
Supergravity Theorie$hys. LettB126(1983) 215.

[16] H. Baer, M. Brhlik, D. Castano, and X. Tata;,— s constraints on the minimal supergravity
model with largetan 3, Phys. RevD58 (1998) 015007,Hep- ph/ 9712305].

[17] B. Dudley and C. KoldaSupersymmetric Flavor-Changing Sum Rules as a Todl fer s,
Phys. RevD79(2009) 015011,3805. 4565].

[18] M. S. Carena, S. Mrenna, and C. E. M. Waghég§SM Higgs boson phenomenology at the
Tevatron collidey Phys. RevD60 (1999) 075010,Hep- ph/ 9808312].

[19] M. Carena, D. Garcia, U. Nierste, and C. E. M. Wagidfective Lagrangian for theb
interaction in the MSSM and charged Higgs phenomenglbiggl. PhysB577(2000) 88-120,
[hep- ph/ 9912516].

[20] C. Hamzaoui, M. Pospelov, and M. Toharitiggs-mediated FCNC in supersymmetric models
with large tan 8, Phys. RevD59 (1999) 095005,Hep- ph/ 9807350].

[21] K. S. Babu and C. F. Kold&jiggs-mediated3° — ;* .~ in Minimal Supersymmetyyhys.
Rev. Lett84 (2000) 228-231,Hep- ph/ 9909476].

[22] A. Dedes, H. Dreiner, and U. Nierst€orrelation of B, — p*p~ and(g — 2),, in minimal
supergravity Phys. Rev. Let87 (2001) 251804,Hep- ph/ ].

[23] T. Blazek, S. Raby, and S. Pokorskinite supersymmetric threshold corrections to CKM
matrix elements in the largean 5 regime Phys. RevD52 (1995) 4151-4158,
[hep- ph/ 9504364].

[24] A. Crivellin and U. NiersteSupersymmetric renormalisation of the CKM matrix and new
constraints on the squark mass-matricelys. RevD79 (2009) 035018,(3810. 1613].

[25] G. Isidori and P. ParadigHints of largetan 3 in flavour physicsPhys. LettB639(2006)
499-507, hep- ph/ 0605012].



REFERENCES 43

[26] U. Nierste, S. Trine, and S. Westhoffharged-Higgs effects in a nel&y — Drv differential
decay distributionPhys. RevD78 (2008) 015006,0J801. 4938 [ hep- ph]].

[27] J. F. Kamenik and F. Mesci&@ — Drv Branching Ratios: Opportunity for Lattice QCD and
Hadron Colliders Phys. RevD78(2008) 014003,7802. 3790].

[28] A.J. Buras, P. H. Chankowski, J. Rosiek, and L. Slawesi@, A M/ AM,, sin 23 and the
angle~ in the presence of neé&x F' = 2 operators Nucl. PhysB619(2001) 434-466,
[hep- ph/ 0107048].

[29] T. A. et al.[CDF Collaboration]Search for B, — p*p~ and B; — pp~ decays with 2fb!
of pp collisions Phys. Rev. Lettt00(2008) 101802,d712. 1708 [ hep- ph]].

[30] DO Collaboration, V. M. Abazoet. al, A search for the flavor-changing neutral current decay
BY — p*u~ in pp collisions aty/s = 1.96 TeV with the D@ detectpPhys. Rev. LetB4
(2005) 071802,ljep- ex/ 0410039].

[31] A.J. Buras, P. H. Chankowski, J. Rosiek, and L. Slawesi@,Correlation betwee\ M, and
Bg 4 — T~ in Supersymmetry at largen 3, Phys. LettB546(2002) 96-107,
[hep- ph/ 0207241].

[32] G. Isidori and A. ReticoScalar flavour-changing neutral currents in the largen S limit,
JHEP11(2001) 001, hep- ph/ 0110121].

[33] A.J.Buras, P. H. Chankowski, J. Rosiek, and L. Slawesi@a, A M, , Bg’s — ptp~ and
B — Xvin Supersymmetry at Largen 3, Nucl. PhysB659 (2003) 3,
[hep- ph/ 0210145].

[34] M. Gorbahn, S. Jager, U. Nierste, and S. Trifiee supersymmetric Higgs sector aBd- B
mixing for largetan 3, arXiv:0901.2065 [hep-ph{2009) P901. 2065].

[35] M. Beneke, P. Ruiz-Femenia, and M. Spinratliggs couplings in the MSSM at largen (3,
JHEPO01(2009) 031,0810. 3768].

[36] M. S. Carena, D. Garcia, U. Nierste, and C. E. M. Wagher, sy and supersymmetry with
large tan 3, Phys. LettB499(2001) 141-146,HHep- ph/ 0010003].

[37] G. Degrassi, P. Gambino, and G. F. Giudife,—~ X+ in supersymmetry: Large contributions
beyond the leading ordedHEP 12 (2000) 009, hep- ph/ 0009337].

[38] J. Guasch, R. Jimenez, and J. S&8apersymmetric QCD corrections to the charged Higgs
boson decay of the top quamRhys. LettB360(1995) 47, hep- ph/ 9507461].

[39] C.S. Huang, W. Liao, Q. S. Yan, and S. H. Zi®, — ¢7¢~ in a general 2HDM and MSSM
Phys. RevD63 (2001) 114021 [Erratum—ibid. B4 (2001) 059902], hiep- ph/ 0006250].

[40] S. Marchetti, S. Mertens, U. Nierste, and D. Stockmgen 5-enhanced supersymmetric
corrections to the anomalous magnetic moment of the rRloys. RevD79 (2009) 013010,
[0808. 1530].

[41] P. Skandt. al, SUSY Les Houches accord: Interfacing SUSY spectrum ctidcsilaecay
packages, and event generatoislEP Q7 (2004) 036, hep- ph/ 0311123].



44

[42] D. M. Pierce, J. A. Bagger, K. T. Matchev, and R.-J. Zhdgcision corrections in the
minimal supersymmetric standard modglcl. PhysB491(1997) 3-67,
[hep- ph/ 9606211].

[43] G. Gamberini, G. Ridolfi, and F. Zwirne@n Radiative Gauge Symmetry Breaking in the
Minimal Supersymmetric Modeéllucl. PhysB331(1990) 331-349.

[44] Y. Yamada,Two-loop renormalization ofan 3 and its gauge dependendehys. LettB530
(2002) 174-178,Hep- ph/ 0112251].

[45] A. Freitas and D. StockingeGauge dependence and renormalizationtzaf 3 in the MSSM
Phys. RevD66 (2002) 095014,Hep- ph/ 0205281].

[46] H. E. Logan and U. Nierstd3, ; — £*¢~ in a two-Higgs-doublet modgNucl. PhysB586
(2000) 39-55, liep- ph/ 0004139].

[47] J. Kublbeck, M. Bohm, and A. DenndteynArts: Computer Algebraic Generation of Feynman
Graphs and Amplitude€£omput. Phys. Commu60 (1990) 165-180.

[48] T. Hahn,Generating Feynman diagrams and amplitudes with FeynAr@ognput. Phys.
Commun140(2001) 418-431,Hep- ph/ 0012260].

[49] G. Degrassi, P. Gambino, and P. Slavi@¢;D corrections to radiative B decays in the MSSM
with minimal flavor violation Phys. LettB635(2006) 335-342,Hep- ph/ 0601135].

[50] A. Denner and T. SaclkRenormalization of the quark mixing matriXucl. PhysB347(1990)
203-216.

[51] P. Gambino, P. A. Grassi, and F. MadricarBiermion mixing renormalization and gauge
invariance Phys. LettB454(1999) 98-104,jep- ph/ 9811470].

[52] J. A. Casas, A. Lleyda, and C. Mund&trong constraints on the parameter space of the MSSM
from charge and color breaking minimilucl. PhysB471(1996) 3-58, iep- ph/ 9507294].

[53] J. A. Casas and S. Dimopouldtability bounds on flavor-violating trilinear soft termsthe
MSSM Phys. LettB387(1996) 107-112,Hep- ph/ 9606237].

[54] S. Pokorski, J. Rosiek, and C. A. Sav@gnstraints on phases of supersymmetric flavour
conserving couplingsNucl. PhysB570(2000) 81-116,Hep- ph/ 9906206].

[55] M. Beneke, X.-Q. Li, and L. Vernazzéladronic B decays in the MSSM with largen 3, Eur.
Phys. JC61(2009) 429-438,4901. 4841].

[56] D. A. Demir and K. A. Olive,B — X, in supersymmetry with explicit CP violatioRhys.
Rev.D65 (2002) 034007,Hep- ph/ 0107329].

[57] M. E. Gomez, T. Ibrahim, P. Nath, and S. Skadhadgeimproved analysis @&f — s+ in
SupersymmetryPhys. RevD74 (2006) 015015,jep- ph/ 0601163].

[58] C. Bobeth, A. J. Buras, and T. Ewerti,— X,/*/¢~ in the MSSM at NNL{CNucl. PhysB713
(2005) 522-554,Hep- ph/ 0409293].

[59] A. Dedes, J. Rosiek, and P. Tane@mmplete One-Loop MSSM Predictions 8t — ¢+¢'~ at
the Tevatron and LH{Phys. RevD79(2009) 055006,(0812. 4320].



REFERENCES 45

[60] A.L.Kagan and M. NeuberQQCD anatomy o8B — X,y decaysEur. Phys. JC7 (1999)
5-27, hep- ph/ 9805303].

[61] M. Ciuchini, G. Degrassi, P. Gambino, and G. F. GiudNext-to-leading QCD corrections to
B — X,vin supersymmetnNucl. PhysB534(1998) 3-20, liep- ph/ 9806308].

[62] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrafg@D factorization for exclusive,
non-leptonic B meson decays: General arguments and theofdmeavy-light final stateNucl.
Phys.B591(2000) 313-418,Hep- ph/ 0006124].

[63] M. Beneke and M. Neuber@QCD factorization forB — PP and B — PV decaysNucl.
Phys.B675(2003) 333-415,Hep- ph/ 0308039].

[64] G. Buchalla, G. Hiller, Y. Nir, and G. RaZ he pattern of CP asymmetriestin— s transitions
JHEPQ09 (2005) 074, hep- ph/ 0503151].

[65] W. Altmannshofer, A. J. Buras, and P. Paradisiwv Energy Probes of CP Violation in a Flavor
Blind MSSM Phys. LettB669(2008) 239-245,J808. 0707].

[66] A. Dedes and A. Pilaftsiqesummed effective Lagrangian for Higgs-mediated FCNC
interactions in the CP-violating MSSN?hys. RevD67 (2003) 015012,ep- ph/ 0209306].

[67] J. R. Ellis, S. Heinemeyer, K. A. Olive, and G. Weiglelight Heavy MSSM Higgs Bosons at
Largetan /3, Phys. LettB653(2007) 292—-299,J706. 0977].

[68] S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weigldthgh-precision predictions for the
MSSM Higgs sector & («y,) andO(as) , Eur. Phys. JC39 (2005) 465-481,
[hep- ph/ 0411114].



