Rapid Firmware Prototyping with Matlab/Simulink for MicroTCA.4

Introducing the Rapid-X toolset for fast prototyping for the MTCA.4 platform

Paweł Prędki
3rd MTCA Workshop for Industry and Research
10.12.2014 DESY, Hamburg
Outline

➤ Motivation

➤ Overview

➤ Example

➤ Current applications

➤ Conclusions
Motivation

➤ MTCA.4 – („MORE BANDWIDTH!!!” – Vollrath Dirksen)

➤ Allows faster and more robust application algorithms

but...

➤ Requires new firmware components
 ▪ Board Support Packages
 ▪ Interface support (e.g. PCIe)
 ▪ Modules for application algorithms

➤ Requires HDL knowledge for prototyping

➤ Problem: Significant workload for FPGA Developers
Idea

- Matlab/Simulink used by application engineers for modelling and simulation
- Generate the application code directly from this model

- Xilinx SysGen allows netlist generation

Main Advantages:
- Shift workload from FPGA developers to application engineers
- Very fast from idea to prototype
- Simulation will show real behavior (finite word length, delays, etc…)
Disadvantages

- No interfaces to BSP
- No distinction of signal types (ADC input, parameter, etc.)
- No possibility to easily re-use previously designed HDL modules
Solution – Rapid-X toolset with custom library components

Example Application: SISO-Controller
Block Representation of Hardware Components
Project flow

1. Generate netlists based on the model (Xilinx SysGen)
2. Populate interfaces between BSP and application (Rapid-X)
3. Generate mapfile (Rapid-X)

1. Synthesis, translation, mapping, PAR, bitfile generation (Xilinx ISE)
Application Engineers Point of View

Developer PC

Bitfile

Mapfile

SSH

MTCA4 Create

PCIe

MTCA4U Library

Developer Tools

Control System
Example: Data Acquisition and Analysis

Requirements:

- Sample raw ADC data with 81MHz to DDR-RAM
- Store the highest value in one channel of the RAM
- Store the smallest value in another channel of the RAM
- Start acquisition on command from the CPU
Example: Data Acquisition and Analysis

1. Build the XISE Project

2. Generate the bitfile

3. Upload the bitfile to the FPGA and the mapfile to the crate CPU (automatic upload not supported currently)
Example: Data Aquisition and Analysis

%% Data Aquisition Test
%

m = mtca4u(); % initialize MicroTCA4 Matlab Tools
SISL8300_init(m, 'SISL'); % initialize SISL board
m.write('SISL', 'WORD_RESET_N', 1); % activate board

%%

m.write('SISL','WORD_START', 1, 'WORD_START', '0'); % Trigger the sampling
pause(1);

plot(m.read_dma('SISL',1,256)); % Plot the raw data
Current Application @ DESY

- Link Stabilizing Unit in Laboratory Setup

- Controller for the Master Laser Oscillator in development

- Beam charge stabilization with Pockels Cell
Conclusion

- Rapid prototyping **with virtually no** knowledge of VHDL

- **Workload shift**: VHDL developer → application engineer

- **Real behavior modelled** using tools known to application engineers

- Easily extendable with **new modules** optimized by VHDL developers

- **Separation** between hardware (board) and application

- Rapid-X models **migratable** to different boards

- **No external tools** - everything is coded in Matlab and tcl scripts
Thank you for your attention

Comments?
Questions?