Quantization of Moduli Spaces of Flat Connections Applications to Supersymmetric Gauge Theories

Ioana Coman-Lohi

(based on joint work with Jörg Teschner and Maxime Gabella arXiv:1505.05898)

DESY Theory Workshop, 30 September 2015

Context

Moduli spaces of flat connections on a Riemann surface $C_{g,n}$ are relevant for 4d class S gauge theories from compactification of 6d $\mathcal{N}=(2,0)$ SCFT's on $C_{g,n}$ [Gaiotto, Moore, Neitzke '09]

Context and motivation:

AGT correspondence [Alday, Gaiotto, Tachikawa '10]

$$\mathcal{N}=2$$
 SUSY $4d$ gauge theories Wilson/'t Hooft operators

ullet Study moduli spaces of flat $SL_N(\mathbb C)$ -connections on $\mathcal C_{g,n}$

$$\mathcal{M}_{\mathrm{flat}}(\mathcal{C}_{g,n}) \simeq \mathrm{Hom}(\pi_1(\mathcal{C}_{g,n}), SL_N(\mathbb{C}))/SL_N(\mathbb{C})$$

$$\dim \mathcal{M} = (2g-2+n)(N^2-1)$$

Outline

- Study the algebra of functions $\mathcal{A}_{g,n}$ on $\mathcal{M}_{\mathrm{flat}}(\mathcal{C}_{g,n})$.
- Find a preferred set of generators w.r.t. a pair of pants decomposition.
 - \circ Algebraic relations between functions on $\mathcal{M}_{\mathrm{flat}}$
- Describe $\mathcal{A}_{g,n}^q\equiv$ a quantization of the algebra of functions on $\mathcal{M}_{\mathrm{flat}}.$
- Investigate the relation to the algebra of Verlinde operators in Toda CFT.

. Coman-Lohi - DESY 2 / 10

I. $A_{q,n}$ and tinkertoys

Basis of algebraic generators:

Fig. 1: Loops and networks on $C_{1,3}$.

- ullet Construct generators of $\mathcal{A}_{g,n}$ from $SL_N(\mathbb{C})$ holonomy matrices
 - \circ Trace functions for simple loops on $\mathcal{C}_{g,n}$, from characteristic polynomial
 - \circ Networks contractions of \prod holonomies by $SL_N(\mathbb{C})$ -invariant tensors

I. $\mathcal{A}_{g,n}$ and tinkertoys

Basis of algebraic generators:

Fig. 1: Loops and networks on $C_{1,3}$.

- Construct generators of $\mathcal{A}_{g,n}$ from $SL_N(\mathbb{C})$ holonomy matrices
 - \circ Trace functions for simple loops on $\mathcal{C}_{g,n}$, from characteristic polynomial
 - \circ Networks contractions of \prod holonomies by $SL_N(\mathbb{C})$ -invariant tensors

• Nicely localized w.r.t. a pair of pants decomposition of $C_{q,n}$, as in CFT.

Relations I

• <u>Skein relations</u> express the product of two functions as a sum over generators.

Punctured torus:

Representations of crossing relations.

Generators and relations

- ullet Coordinates on a triangulation of $\mathcal{C}_{g,n}$
 - Fock-Goncharov coordinates x_i : attach to triangulation. [Fock, Goncharov '06]
 - Construct the holonomy matrices from elementary matrices: edge - crossing or moving through a face.

Fig. 2: $C_{0,3}$ coordinates.

ullet Example: $SL(4,\mathbb{C})$ holonomy around puncture A on $\mathcal{C}_{0,3}$

$$A_1 = \text{tr} \mathbf{A} = \prod_i \alpha_i^{-\kappa_{1i}^{-1}} (1 + \alpha_1 + \alpha_1 \alpha_2 + \alpha_1 \alpha_2 \alpha_3)$$
.

• Networks expansion $N_i = \sum_{\underline{\mathbf{a}}} c_{\underline{\mathbf{a}}} x_{\underline{\mathbf{a}}}$ for $x_{\underline{\mathbf{a}}}$ monomials of x_i coordinates.

II. Quantization of $\mathcal{A}_{g,n}$

- Algebra: q-deformed algebraic relations between the generators of $\mathcal{A}_{g,n}^q$ using q-skein relations derived from quantum groups, with $q=e^{i\hbar}$.
- Representation: canonically quantize Fock-Goncharov coordinates. Construct the quantized generators in terms of \hat{x}_i coordinates. $\hat{x}\hat{y} = q^{\epsilon_{xy}}\hat{y}\hat{x}$

The quantized $\mathcal{A}_{g,n}^q$ is provided by a 1-parameter family of skein non - commutative algebras of links in an oriented 3-manifold. [Turaev '91]

One can define networks in terms of $\mathcal{U}_q(sl(N))$ invariant tensors. [Sikora '05]

$$[\hat{A}, \hat{B}] \xrightarrow{q \to 1} \hbar\{A, B\}$$

q-deformed relations

Examples:

• $\mathcal{U}_q(sl(N))$ quantum crossing relation: by rescaling networks constructed from tensor contractions.

• Representation: $\mathcal{U}_q(sl(4))$ quantum skein relation

Quantized generators

Fock-Goncharov coordinates:

- Quantized Fock-Goncharov coordinates satisfy $\hat{x}_{lpha}\hat{x}_{eta}=q^{\epsilon_{lphaeta}}\hat{x}_{eta}\hat{x}_{lpha}$.
- Monomials: $x_{\underline{\mathbf{a}}} = \exp \sum_{\alpha} \mathbf{a}_{\alpha} X_{\alpha} \quad \rightarrow \quad \hat{x}_{\underline{\mathbf{a}}} = \exp \sum_{\alpha} \mathbf{a}_{\alpha} \hat{X}_{\alpha}$

We construct quantized networks $\hat{N}_i = \sum_{\underline{\bf a}} c^q_{\underline{\bf a}} \hat{x}_{\underline{\bf a}}$ and trace functions.

Example: quantum skein relation for $\mathcal{U}_q(sl(3))$

$$\hat{N}_{AC}\hat{N}_{BC} = q^{1/2}\hat{\bar{W}}_1 + q^{-1/2}\hat{W}_1 + A_1B_1C_1 + A_2B_2C_2 + A_1A_2 + B_1B_2 + C_1C_2 + [3]$$

General expanded form of quantized functions $\hat{F} = \sum_{\underline{\mathbf{a}}} c_{\underline{\mathbf{a}}}^q \hat{x}_{\underline{\mathbf{a}}}$

So far...

• Classically: studied the algebra of functions $A_{g,n}$ on $\mathcal{M}_{\mathrm{flat}}(\mathcal{C}_{g,n})$.

Tinkertoys – preferred set of generators w.r.t. pair of pants decomposition.

Quantization:

Described a quantization $\mathcal{A}_{g,n}^q$ of the algebra of functions on $\mathcal{M}_{\mathrm{flat}}$.

 $\mathcal{A}^q_{g,n}$ in FG-coordinates \leftrightarrow representation of quantum skein relations.

Examples of quantization of BPS indices for higher rank.

Claim:

The algebra of Verlinde line and network operators in Toda CFT on $C_{g,n}$ provides a representation of $\mathcal{A}_{g,n}^q$.

III. Toda field theory and Verlinde operators

- Verlinde loop and network operators
 describe the monodromy acquired by a
 vertex operator as it moves along a path.
- Fusion/braiding on conformal blocks.
- Braiding matrix $B(\alpha) o \widetilde{R} \in \mathcal{U}_q(sl_N)^{\otimes 2}$
- ullet Drinfeld twist: standard $R \; o \; J^{-1} \widetilde{R} J$

•
$$VO_m \simeq M_{\lambda_m} \otimes \ldots \otimes M_{\lambda_1}$$

Thank you for your attention!

GATIS

Gauge Theories as Integrable Systems