MO Design and Status Review

XFEL MO concept, overview of system components

Łukasz Zembala
Warsaw University of Technology
Institute of Electronic Systems

MSK Collaboration Workshop 2015
Three Main Functionalities

1. Generation of ultra stable 1.3 GHz signal:
 - stability: \(5 \times 10^{-11}\) for >1s observation time, no aging – GPS stabilization
 - jitter: <170 fs RMS (1 Hz – 10 MHz)
 - output power: +40 dBm (32 outputs, min +15 dBm each)

2. Redundancy:
 - more than one unit
 - automatic failure detection
 - no interruption in signal delivery in case of one unit failure
 - small transition allowed

3. Diagnostics:
 - Built-in diagnostics in each device
 - DOOCS panels for monitoring
Concept Development - Single MO

- Simplicity
- Phase noise achievable
- Diagnostics easy to implement
- but..

No redundancy!
Concept Development – Two MO Channels

> Two units, but still no failure detection and no merging point.

Solution:

> **Failure detection** - low latency monitoring of amplitude and phase
 - no reference for phase measurement
 - slow drifts between Generation Channels

> **Channels isolation** – switching
 - no signal during switching
> Failure detection:
 - 3 Generation Channels allow to determine signal with wrong phase
 - Drifts between Channels are compensated by Vector Modulators (VM) to the SELECTED channel

> Channels isolation:
 - High-Q filter sustains signal for ~300 ns (time for detection and switching)

> COMPLEXITY
Each box is an individual 19'' module

Together 7 types of modules
- 3 types are ordered in external companies
- 4 types are designed and produced in DESY

Total number of modules: 13
Generation Channel Devices

- **GPSDO**: 100 MHz Synt., 1.3 GHz Synt.
- **REDUNDANCY BOX**: RF switch with Redundancy Controller, High-Q 1.3 GHz filter.
- **RF DISTRIBUTION BOX**: 32-way Power Splitter, Input and reflected power measurement.
- **PHASE NOISE ANALYZER**: 1.3 GHz +15 dBm.

Łukasz Zembala | XFEL MO concept, overview of system components | 11.06.2015 | Page 7
Generation Channel Devices

GPS Disciplined Rubidium Oscillator
- Provided by external company
- Consists of two units:
 - 2U: GPS receiver and Rb oscillator
 - 1U: ultra low noise OCXO and amplifier
- Features:
 - 10 MHz signal output
 - high signal stability
 - built-in diagnostics with LAN port
 - GPS antennas installed on XTIN roof

100 MHz Synthesizer
- Design and production in DESY
- 2U 19" module
- Features:
 - 100 MHz output
 - ultra low noise
 - built-in diagnostics
 - output protection against power reflection
- Components:
 - ultra low noise 100 MHz OCXO
 - locking unit
 - FRED
 - TMCB
 - isolator at the output

1.3 GHz Synthesizer
- Design and production in DESY
- 5U 19" module
- Features:
 - 1.3 GHz output
 - -170 dBC/Hz phase noise floor
 - High output power (+40 dBm)
 - unlimited phase control by VM
 - output protection against power reflection
- Components:
 - Dielectric Resonator Oscillator
 - High Power Amplifier
 - locking unit
 - 13x frequency multiplier
 - uVM
 - isolator at the output
Redundancy Box

POWER SUPPLY MODULE

GPSDO → 100 MHz Synt. → 1.3 GHz Synt.

GPSDO → 100 MHz Synt. → 1.3 GHz Synt.

GPSDO → 100 MHz Synt. → 1.3 GHz Synt.

REDUNDANCY BOX

RF switch with Redundancy Controller

High-Q 1.3 GHz filter

µC

RF DISTRIBUTION BOX

32-way Power Splitter

Input and reflected power measurement

PHASE NOISE ANALYZER

1.3 GHz

+15 dBm
Redundancy Box

Design and production in DESY

- 5U 19" module
- Features will be covered in B. Gąsowski talk

Components:
- RF switch with built-in low latency phase and amplitude measurement
- High-Q filter
- Redundancy controller
- TMCB

Redundancy Box

RF Switch PCB with built-in diagnostics

High-Q 1.3 GHz filter
Remaining Components

- **Power Supply Module**
 - Provided by external company
 - Provides power to:
 - GPSDO
 - 100 MHz Synthesizer
 - 1.3 GHz Synthesizer
 - Redundancy Box
 - RF Distribution Box

- **Redundant**
 - the same type as for LLRF

- **RF Distribution Box**
 - Design and production in DESY
 - 5U 19" module
 - Features:
 - 32 outputs
 - measurement of input and reflected power
 - LAN connection
 - Components:
 - power splitters
 - Bi-directional couplers and power meters
 - FRED
 - TMCB

- **Phase Noise Analyzer**
 - Provided by external company
 - 3U 19" module
 - Features:
 - Phase noise measurement
 - communication over LAN port
 - input for external references
Diagnostics in DESY modules

- Each DESY 19" module has built-in diagnostics and TMCB onboard
- TMCB collects data and communicates with DOOCS

- FRED provides the power to submodules
MO Rack Layout

1. MO Channel #1
2. MO Channel #2
 - Redundancy Box
 - Distribution Box
3. MO Channel #3
 - Interferometer Boxes
 - Interferometer for KLM

 Łukasz Zembala | XFEL MO concept, overview of system components | 11.06.2015 | Page 13
Task Assignment

- Project leader – Łukasz Zembala
- Redundancy and RF Switch – Bartosz Gąsowski
- Tests and assembly – Stanisław Hanasz
- Orders, schematics, reviews – Henning Weddig
- Mechanics designer – Maciek Woźniczko
- Support boards – Marcin Sosnowski
- Redundancy Controller – Tomasz Owczarek
- Software – Adam Dworzański
- ...

Specifications, production files, failure reports and all the other project files are placed on the N: drive in the folder: N:\4all\public\MSK_Projekte\RFSyn\XFEL_MasterOscillator

MO project in Redmine is started
Thank you for your attention!
Requirements from the users (backup slide)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value [unit]</th>
<th>Feasibility (comment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1.3 GHz</td>
<td>✓</td>
</tr>
<tr>
<td>Harmonics</td>
<td>< -60 dBC</td>
<td>✓</td>
</tr>
<tr>
<td>Subharmonics</td>
<td>< -60 dBC</td>
<td>✓</td>
</tr>
<tr>
<td>Spurious</td>
<td>< -60 dBC</td>
<td>✓</td>
</tr>
<tr>
<td>Long term frequency stability:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s – 1 day</td>
<td>≤ 5x10^{-11}</td>
<td>✓</td>
</tr>
<tr>
<td>>1 day</td>
<td>< 5x10^{-11}</td>
<td>✓</td>
</tr>
<tr>
<td>Aging</td>
<td>> 1 month</td>
<td>GPS</td>
</tr>
<tr>
<td>Short term frequency stability:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Hz</td>
<td>< -60 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>10 Hz</td>
<td>< -80 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>100 Hz</td>
<td>< -115 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>1 kHz</td>
<td>< -140 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>10 kHz</td>
<td>< -145 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>100 kHz</td>
<td>< -163 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>1 MHz</td>
<td>< -170 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>10 MHz</td>
<td>< -170 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>floor</td>
<td>< -170 dBC/Hz</td>
<td>✓</td>
</tr>
<tr>
<td>Connector type</td>
<td>SMA</td>
<td>✓</td>
</tr>
<tr>
<td>Number of outputs</td>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
<td>✓</td>
</tr>
<tr>
<td>Power at each output</td>
<td>+15 dBm</td>
<td>✓</td>
</tr>
<tr>
<td>Amplitude stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Hz < f < 10 Hz</td>
<td>±0.088 dB</td>
<td>✓</td>
</tr>
<tr>
<td>f > 10 Hz</td>
<td>±0.0080 dB</td>
<td>✓</td>
</tr>
<tr>
<td>Acceptable period of signal's interruption (case of redundant source switching)</td>
<td>no interruption allowed</td>
<td>✓</td>
</tr>
</tbody>
</table>

8 extra general purpose outputs of 10 MHz (1.3 GHz division of frequency by 130); min 0dBm each.
8 extra general purpose outputs of 216 MHz (1.3 GHz division of frequency by 8); min 0dBm each.
Functional block diagramme of the 1.3 GHz Synthesizer