Redundancy switch and controller design status

Bartosz Gąsowski, ISE
MSK Collaboration Workshop 2015
Warsaw, 10-12.06.2015
Redundancy role and structure

➢ Redundancy aim to increase Master Oscillator reliability

➢ In case of a failure event:
 ▪ Power drops less than 3 dB for less than 1 us
 ▪ Phase returns to original value with worst-case error about 1 ps in less than 2 us
High-Q Filter

- High quality-factor dielectric resonator filter
- Used for energy storage
- Ready to use
- The newest version withstood +50 dBm RF power for weeks
Generation Channel synchronisation

- Vector modulator used as an unlimited phase shifter
- Custom assembly variant of the uVM (DRTM-VM2)
 - Used as standalone unit
 - Already ordered
 - Digital M-LVDS link to the Redundancy Controller
 - Digital SFP link to TMCB for monitoring

- To do
 - Custom firmware
 - Small Zone3 adapter board (Marcin Sosnowski)
 - Fixing assembly (Łukasz Zembala and Maciej Woźniaczko)
RF Switch module (1)

- SP3T RF switch capable of handling high power (+40 dBm)
- Integrated phase and power detectors
- Fast switching (latency < 100 ns)
- Custom -40 V drivers (additional piggyback modules)
- Complex topology
 - Symmetrical layout
 - 6 SPDT switch ICs
RF Switch module (2)

- Main board: six layer PCB, low drift material on RF layers
- Prototype currently in production - should be ready in early July
- Standalone tests and measurements until mid-August
- Driver modules: double sided PCB, production in following weeks
Redundancy Controller

> General concept is ready

> Task force:
 - Bartosz Gąsowski – general concept, specification
 - Tomasz Owczarek – detailed AFE concept, digital solution selection
 - Marcin Sosnowski – schematic and PCB design

> Device is planned to be:
 - Designed in August
 - Manufactured in September

> Open points
 - When exactly assert MPS alarm? (not urgent: configurable in firmware)
Redundancy Box

> Other modules/components

- TMCB for monitoring and communication
- FRED (open point: allow supply switching or not?)
- -45 V power supply for RF Switch (TODO)
- High power RF loads

> Mechanical design will be done after all modules
Redundancy subsystem tests (1)

> General test ideas are ready
> Detailed plan should be prepared
> Basic tests and calibration will be done in the lab
 - As soon as possible
 - For each module separately
 - For whole subsystem (as much as possible with available hardware)
Redundancy subsystem tests (2)

Tests in XFEL

- Currently planned for October
- Some quick tests might break output reference signal
- Longer tests are generally passive and “safer”

Requirements

- All redundancy modules ready
- Usable version of firmware available
- All three Generation Channels operational

Optional final calibration

- Will be done during tests (if needed)
Documentation status

- Conceptual and functional documentation, specifications
 - Available on the N: drive
 - For the Controller specification working draft is available in Redmine

- Final documentation (user and maintenance)
 - Still to be done
 - Will be done in parallel with tests

- All MO related files are available on the N: drive:
 - `N:\4all\public\MSK_Projekte\RFSyn\XFEL_MasterOscillator`

- RF Switch design is available in SVN repo: `XFEL_MO_RF_Switch`
Thank you for your attention