Efficient Computing in Particle Physics

Peter Uwer
What do we mean by efficiency?

Getting the result as fast as possible!
Different kinds of efficiency

- Different algorithms may be more or less efficient
- Different implementations of the same algorithm may be more or less efficient
- Different tools may be more or less efficient for specific tasks
Example: Algorithms for sorting

Bubble sort: 1. Step through the list, compare neighboring elements,
2. Swap them if they are in the wrong order,
3. Repeat until no swapping occurs

First Pass:
(5 1 4 2 8) \rightarrow (1 5 4 2 8), Swap since 5 > 1
(1 5 4 2 8) \rightarrow (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) \rightarrow (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) \rightarrow (1 4 2 5 8),

Second Pass:
(1 4 2 5 8) \rightarrow (1 4 2 5 8)
(1 4 2 5 8) \rightarrow (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) \rightarrow (1 2 4 5 8)
(1 2 4 5 8) \rightarrow (1 2 4 5 8)

Third Pass:
(1 2 4 5 8) \rightarrow (1 2 4 5 8)
(1 2 4 5 8) \rightarrow (1 2 4 5 8)
(1 2 4 5 8) \rightarrow (1 2 4 5 8)
(1 2 4 5 8) \rightarrow (1 2 4 5 8)

What is needed by the sorting algorithm ?
\rightarrow Compare items (is_greater(a,b))
\rightarrow Swap items
Example: Algorithms for sorting

Quick sort:

1. Pick an element x from the list.
2. Reorder the list so that all elements which are less than x come before x and all elements greater than x come after it.
3. Recursively sort the sub-list of lesser elements and the sub-list of greater elements.
Many other algorithms available:

- Insertion sort
- Shell sort
- Merge sort
- Heap sort
- Bucket sort
- Radix sort
- Distribution sort
- Shuffle sort
- ...

[see for example D. Knuth’s book for details]

What is the difference?

Their efficiency!
Example: Algorithms for sorting

Bubble sort:

1. Step through the list, compare neighboring elements,
2. Swap them if they are in the wrong order,
3. Repeat until no swapping occurs

First Pass:

- \((5 \ 1 \ 4 \ 2 \ 8) \rightarrow (1 \ 5 \ 4 \ 2 \ 8)\), Swap since \(5 > 1\)
- \((1 \ 5 \ 4 \ 2 \ 8) \rightarrow (1 \ 4 \ 5 \ 2 \ 8)\), Swap since \(5 > 4\)
- \((1 \ 4 \ 5 \ 2 \ 8) \rightarrow (1 \ 4 \ 2 \ 5 \ 8)\), Swap since \(5 > 2\)
- \((1 \ 4 \ 2 \ 5 \ 8) \rightarrow (1 \ 4 \ 2 \ 5 \ 8)\)

Second Pass:

- \((1 \ 4 \ 2 \ 5 \ 8) \rightarrow (1 \ 4 \ 2 \ 5 \ 8)\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\), Swap since \(4 > 2\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)

Third Pass:

- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)
- \((1 \ 2 \ 4 \ 5 \ 8) \rightarrow (1 \ 2 \ 4 \ 5 \ 8)\)

If list has \(n\) objects we need \(n\) passes with every pass having \(n\) comparisons,

\(\rightarrow n^2\) operations to sort a list of \(n\) elements

\(\rightarrow \text{“complexity is of order } n^2\text{” } (O(n^2))\)
Big O notation

Asymptotic behaviour for large integer n

$$O(f(n))$$

How to read?

$$O(f(n)) = x_n \leq M|f(n)| \text{ for } n > n_0$$

Example: Harmonic sums for large n

$$H_n = \sum_{k=1}^{n} \frac{1}{k}$$

$$H_n = \ln(n) + \gamma + O\left(\frac{1}{n}\right) \quad \Rightarrow \quad |H_n - \ln(n) - \gamma| \leq \frac{M}{n} \text{ for } n > n_0$$
Computational cost

$O(1)$
cheap

$O(\log(n))$
fairly cheap

$O(n)$
expensive

$O(n \log(n))$
expensive

$O(n^2)$
very expensive

$O(e^n)$
unaffordable

$O(n!)$
unaffordable
Complexity of different sorting algorithms

<table>
<thead>
<tr>
<th>Name</th>
<th>Average</th>
<th>Worst</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble sort</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Cocktail sort</td>
<td>—</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Comb sort</td>
<td>—</td>
<td>—</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Gnome sort</td>
<td>—</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Selection sort</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Shell sort</td>
<td>—</td>
<td>$\mathcal{O}(n \log^2 n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Binary tree sort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
<tr>
<td>Library sort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
<tr>
<td>Merge sort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
<tr>
<td>In-place merge sort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Smoothsort</td>
<td>—</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Quicksort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(\log n)$</td>
</tr>
<tr>
<td>Introsort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
</tr>
<tr>
<td>Patience sorting</td>
<td>—</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
<tr>
<td>Strand sort</td>
<td>$\mathcal{O}(n \log n)$</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
</tbody>
</table>
The complexity of the n-gluon amplitude

“Number of diagrams” [Fabio Maltoni]

<table>
<thead>
<tr>
<th>n</th>
<th>full Amp</th>
<th>partial Amp</th>
<th>BG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>220</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>2485</td>
<td>133</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>34300</td>
<td>501</td>
<td>126</td>
</tr>
<tr>
<td>9</td>
<td>559405</td>
<td>1991</td>
<td>210</td>
</tr>
<tr>
<td>10</td>
<td>10525900</td>
<td>7335</td>
<td>330</td>
</tr>
<tr>
<td>11</td>
<td>224449225</td>
<td>28199</td>
<td>495</td>
</tr>
<tr>
<td>12</td>
<td>5348843500</td>
<td>108280</td>
<td>715</td>
</tr>
</tbody>
</table>

\[(2n)! \quad 3.8^n \quad n^4 \]

color-ordered
Importance of Big O

Note:

For many application n is still rather small

→ Asymptotic behaviour may be irrelevant

For small n an algorithm which is formal more complex may still be faster

→ implementation, computing architecture

Implementation may switch between different algorithms

In many cases we are already happy if we have ONE algorithm
Example: One-loop tensor reduction

\[I_N^{\mu_1 \mu_2 \cdots \mu_m} (D; \{q_i\}, \{1\}) = \int \frac{d^D \ell}{i\pi^{D/2}} \frac{\ell^{\mu_1} \ell^{\mu_2} \cdots \ell^{\mu_m}}{d_1 d_2 \cdots d_N} \]

\[d_i = (\ell + q_i)^2 + i0. \]

The algorithm

\[I_N^{\mu_1 \mu_2 \cdots \mu_m} (D; \{q_i\}, \{1\}) = \sum_{\lambda, x_1, x_2, \ldots, x_N} \delta(2\lambda + \sum_i x_i - m) \left(-\frac{1}{2} \right)^\lambda x_1!x_2! \cdots x_N! \times \left\{ g^\lambda q_1^{x_1} q_2^{x_2} \cdots q_N^{x_N} \right\}^{\mu_1 \mu_2 \cdots \mu_m} \]

\times I_N (D + 2(m - \lambda); \{q_i\}, \{1 + x_i\}). \]

Scalar integrals

[\text{Lorentz structures}]

[Davydychev]
Tensor reduction using integration-by-parts

\[0 = \int \frac{d^d \ell}{(2\pi)^d} \frac{\partial}{\partial \ell^\mu} \left(\frac{\sum_i^n y_i (\ell + q_i)}{((\ell + q_1)^2 - m_1^2)^{\nu_1} \ldots ((\ell + q_n)^2 - m_n^2)^{\nu_n}} \right) \]

\[(\nu_k - 1)I(d; \{\nu_i\}) = \sum_{i=1}^n S_{ki}^{-1}I(d - 2; \{\nu_i - \delta_{li} - \delta_{lk}\}) - b_k(d - \sigma)I(d, \{\nu_i - \delta_{lk}\}) \]

\[\sigma = \sum \sigma_i \]

\[S_{ki} = (q_i - q_j)^2 \]

5-point
Tensor reduction using integration-by-parts

Integrals with raised powers of propagators are reduced recursively to integrals with lower powers:

\[\text{IntType Inc(int d, int n1, int n2, int n3, int n4, int n5, int n6, ...)} \{
\]

\[. \]

\[. \]

\[. \]

\[\text{return(+ b[1] * Int(d, n1-1, n2, n3, n4, n5, n6, ...)} \]
\[+ b[2] * Int(d, n1, n2-1, n3, n4, n5, n6, ...)} \]
\[+ b[3] * Int(d, n1, n2, n3-1, n4, n5, n6, ...)} \]
\[+ b[4] * Int(d, n1, n2, n3, n4-1, n5, n6, ...)} \]
\[+ b[5] * Int(d, n1, n2, n3, n4, n5-1, n6, ...)} \]
\[+ b[6] * Int(d, n1, n2, n3, n4, n5, n6-1, ...)} \]
\[)} \]

Easy to implement, but some integrals are evaluated several times → poor performance.
Tensor reduction using integration-by-parts

Need to store integrals already known in a data base

→ use cache

For complicated topologies large improvement in performance, when cache is used

→ difference in runtime by large factor (~1000)

[numerical implementation used in tt+1-Jet production @ NLO]

Note:

● For testing the basic implementation, cache is not required
● Impressive speed up only due to poor behaviour of initial version
Efficiency of tools

Intrinsic limitations:

- Performance of CAS like Maple and Mathematica often degrades when large expressions are encountered
- Form delivers performance even when operating on large expressions

On the other hand:

- If for example factorization is important to keep your expressions small, Maple or Mathematica are probably better adopted to your problem

➔ No general rule, the decisions depend on the problems and the algorithms
Choosing the right tools

- Know about strength and weakness of tools
- If possible extend capabilities to your own needs
 - Extension of Maple/Mathematica by C/C++/Fortran code
 - Extension of Form via pipe mechanism
- Be flexible in switching between tools
 - Store result, use different tool, continue with original tool
- Do not blindly believe the common blurb

[see Kouhei Hasegawa’s talk]
Comments on tuning

- First consider of buying a faster computer
- Get things work first, then consider tuning it
- Don’t expect too much from tuning the implementation
- Improving the algorithm is usually much more important
 - Improve on the complexity
 - Use algorithm more adopted to your tools
- Use tools more adopted to your algorithms

Note:

- If computing effort is distributed “equally” over several steps → difficult to tune
- First identify the “hot-spots” → profiling
What this lecture won’t tell you

- How to develop efficient algorithms for your problem
- A full proofed method to tune the implementations of your algorithms
- What tools you should use
What I will try to tell you

- Some ideas to organize your work in an efficient way
- Some guidance in finding the right tools
- Encourage you to learn new techniques
- A short introduction into C++

In many cases you may not save time in the beginning, but:

- What do you like more? Do the same thing over and over again, or spent the time on learning something new to do it automatically and saving time in the future?
- Knowledge always pays off sooner or later…

...let’s consider a real life problem…
A generic project…

- Genious idea
- Some calculations on paper
- Computer Algebra
- Numerical part
- Publication

→ Different steps may involve different tools
→ Some steps may relay on others
→ Need to redo certain things if we discover mistakes
→ Don’t redo things which were not affected

nothing to tell about this
Abstract formulation:

Rules and dependencies

Rules tell us how to create results from other results

Dependencies tell us which result depends on which input

Standard tool to treat this type of problem:

make

[see also Thomas Hahn’s lecture]
Example

The master equation:

\[f(n,k,x) = \binom{n}{k} \frac{(x+2)(x+3)}{(x+5)^3}, \]

\[b = \cos(x), \]
\[w = b \times f(n,k,x). \]

Using

\[n = 5, \]
\[k = 2. \]

A very sophisticated evaluation on a $2,000,000$ computer yields Figure 1.

```
#dependencies:
paper.ps: paper.tex plot.eps
plot.eps: data.dat plotit.kumac
data.dat: a.out
a.out: numerics.c fun.c
fun.c: doit.mpl result
result: paper.tex
```

“The genius idea”

The rules specify how the dependencies are updated.

Figure 1: The result.
Rules to update the dependencies

```
paper.ps: paper.tex plot.eps
    latex paper.tex; latex paper.tex; dvips paper.dvi -o paper.ps

plot.eps: data.dat plotit.kumac
    pawX11 -b plotit.kumac

data.dat: a.out
    rm -f data.dat; ./a.out > data.dat

a.out: numerics.c fun.c
    gcc -lm numerics.c

fun.c: doit.mpl result
    rm -f fun.c; maple < doit.mpl

result: paper.tex
    ExtractCode.csh paper.tex


clean:
    rm -f result fun.c a.out paper.aux paper.log paper.dvi paw.metafile

distclean: clean
    rm -f data.dat plot.eps paper.ps

```

do some mathematics produce
part of the numeric program

Extract formulae form tex-file
How to write your \LaTeX\ formula

\[f(n,k,x) = \binom{n}{k} \frac{(x+2)(x+3)}{(x+5)^3} \]

\begin{verbatim}
\begin{equation}
%%STARTCODE
\res = \binomial(n,k) * \{(x+2)*(x+3) \over (x+5)^3\};
%%ENDCODE
, tag to extract formula
\end{equation}
\end{verbatim}

Macro taken from Jos:

\begin{verbatim}
\def\binomial(#1,#2){ \left(\begin{array}{c} #1 \\ #2 \end{array}\right) }
\end{verbatim}

\rightarrow can be converted with a few \texttt{editor} commands to maple/math.

Use \texttt{sed} to do this automatic

sed = stream editor, see example for details
How to extract and move information

Use shell-tools like

`cat, sed, ed, awk, cut, paste,…`

to extract and modify information

For more complicated situations use

Regular Expressions

Regular Expressions are similar to pattern matching with wildcards in Form

Example: Translate `a(1),a(2),a(3)` into `b[1], b[2], b[3]`

Regular Expressions can save you a lot of time during development or in porting information
Extract formulae from LaTeX

\begin{equation}
res = \binomial(n,k) \times \frac{(x+2)(x+3)}{(x+5)^3} \%
\end{equation}
\begin{equation}
b = \cos(x) \%
\end{equation}
\begin{equation}
w = b \times res \%
\end{equation}

Using
\begin{equation}
n = 5 \%
\end{equation}
\begin{equation}
k = 2 \%
\end{equation}

res := \binomial(n,k) \times \frac{(x+2)(x+3)}{(x+5)^3}

b := \cos(x)

w := b \times res

n := 5

k := 2

File: paper.tex

File: ExtractCode.csh

File: result
To assure the correctness of the published formulae we typed them in again…

no fun and clearly not very efficient
Produce C code from expressions using Maple

→ Similar features in Mathematica

```maple
read "./result";

with(CodeGeneration);

C(w, declare=[x::numeric], resultname="res", output="fun.c");
```

File: doit.mpl

```maple
res = 0.10e2 * cos(x) * (x + 0.2e1) * (x + 0.3e1) * pow(x + 0.5e1, -0.3e1);
```

File: fun.c

Useful option: optimize
Remark

Using the command line interface to maple/mathematica is important here!

[see also Thomas Hahn’s lecture]

Everything can be run from a shell / batch queue!

Additional remark on worksheets:

- Not unusual that after an update worksheet becomes unreadable
- Porting a text file (ascii) from one CAS to another easier than porting a worksheet
Example

The master equation:

$$f(n,k,x) = \binom{n}{k} \frac{(x+2)(x+3)}{(x+5)^3},$$ \hfill (1)

$$b = \cos(x),$$ \hfill (2)

$$w = b \times f(n,k,x).$$ \hfill (3)

Using

$$n = 5,$$ \hfill (4)

$$k = 2.$$ \hfill (5)

A very sophisticated evaluation on a $2,000,000$ computer yields Figure 1.

Figure 1: The result.

```
paper.ps: paper.tex plot.eps
latex paper.tex; latex paper.tex

plot.eps: data.dat plotit.kumac
pawX11 -b plotit.kumac

data.dat: a.out
rm -f data.dat; ./a.out > data.dat

a.out: numerics.c fun.c
gcc -lm numerics.c

fun.c: doit.mpl result
rm -f fun.c; maple < doit.mpl

result: paper.tex
   ExtractCode.csh paper.tex

clean:
rm -f result fun.c a.out paper.aux paper.log paper.dvi paw.metafile

distclean: clean
rm -f data.dat plot.eps paper.ps
```

`make` updates the entire project automatically

`/afs/ifh.de/user/p/puwer/public/capp/exercises/make`
Automate testing

A long the same lines automate the testing

Possible checks:

- Evaluate numerically
- Check known cases
- Check symmetries
- ...

Automating these checks saves you a lot of time

→ debugging during development
→ comparison with your colleagues
→ assure correctness after modifications

Extreme case: First write the checks and than solve the problems

Nice side effect: Helps you in splitting/organizing your project in individual modules
Basic layout of a computer

Storage speed:
- cache > memory > hard disk
- $\approx 100 : \approx 10 : \approx 1$

→ Amount and layout of data has important impact on speed

The more memory you need the more you are limited by the bandwidth
Memory is accessed via cache

If your application conflicts with the way the cache works, this may have dramatic impact on performance:

Matrix multiplication of \(n \times n \) matrix \(\rightarrow O(n^3) \)

For \(n = 160 \):

71s \(\leftarrow \rightarrow \) \(~26s\)
Some details about the cache

Cache is organized in cachelines with 64 byte each.

For specific address region only a limited number of these lines are available.

If you need more than the available number the cache will stop working → severe performance problem.

→ align data to specific addresses,
→ keep data which is used together close to each other in memory
→ avoid data sizes conflicting with the cache mechanism.
Important consequence

Obtain best performance if expressions stay in memory

If hard disk is used, speed of your application is limited by bandwidth of hard disk, don’t use network file system in such cases

...your home directory is usually located on a network file system (nfs,afs)...

→ Try to keep your expressions (=data) small

No general rule how to do this, try to reduce expressions to a basis with a minimal number of individual structures

Example: \[
\frac{1}{1-x} - \frac{x}{1-x} - 1
\]

partial fractioning
Data storage: How

Some examples:

Arrays, Vectors:
\[\text{pos}_i = \text{base} + i \times \text{size} \]

Access: $O(1)$
Insertion: $O(n)$

Lists:

Access: $O(n)$
Insertion: $O(1)$

Trees:

\[3 \times 4 + 2/4 \]
→ Adopt the way you store your data to the problem
Data storage: Where

static

at fixed distance with respect to the code, available during the entire runtime

automatic

on the stack, disappear when stack is cleaned up, i.e. after return from function

heap

Allocated dynamically during runtime, needs to be freed

Important for:

- Performance
- To understand error messages (stack overflow, segmentation fault)
- Parallelization using threads ("reentrant")

Note: Essentially no control over storage in computer algebra
Computing in Particle Physics

- Analytic/Algebraic Methods
- Numerical Methods
In the end we are interested in a number to compare with nature

→ there is always some numerics

Some algorithms are more useful when applied numerically

[see Malgorzata Worek’s lecture, Costa Papadopoulos lecture]

Often we don’t care about the intermediate (analytic) results
What language shall we use?

Supervisor: Fortran77, I did this 20 years ago and it was fine

The IT Expert: C++, only object-oriented programming makes sense

The performance expert: Use a compiled language otherwise it will be too slow
Some recommendations

- Use the language you know best

- Learning a new language in particular object oriented ones, is a huge investment

- Start with small projects

- Don’t translate old code into a new language

 ➔ see Thomas Hahn’s lecture how to interface different languages
Why C++?

- Very powerful language
- Many existing libraries
- Considered as language allowing efficient code reuse
- Can do both in C++: analytic as well as numerical calculations
- Well suited to deal with increasing complexity in computational physics
- Conceptually very different from non-object oriented languages
Object oriented programming — basic ideas

- Introduces new data types
- Put data and methods (≈functions) together (\(\rightarrow\) “class”)
- Hide the storage of the data and the implementation of the methods from the user

Example:

```cpp
class TwoDimVec {
    public:
        double norm2();
    private:
        double x, y;
}
```

\(\leftarrow\) No direct access to x,y!

Usage:

```cpp```
TwoDimVec a;
```
a.norm2();```
Object oriented programming — basic ideas

If we change later

```cpp
class TwoDimVec {
    public:
        double norm2();
    private:
        double x, y;
}

double norm2() { return (x*x + y*y); };
```

```cpp
class TwoDimVec {
    public:
        double norm2();
    private:
        double x[2];
}

double norm2() { return (x[0]*x[0] + x[1]*x[1]); };
```

the user would use the code as before

The class **can** ensure:

- that objects are correctly initialized
- that data always remains consistent
- that data which belongs together is stored together
- that objects are cleaned up when no longer used
- many more sophisticated things…
Function overloading — use the same name for functions with different arguments

```c
int max(int a, int b);
float max(float a, float b);
double max(double a, double b);
```

compiler figures out which function to use, programs become more readable

How does it work?

“name mangling”

The compiler appends the type of the arguments to the function name

→ annoying when interfacing with C and Fortran code to switch off use: `extern "C" { ... }`
Object oriented programming — basic ideas

Operator overloading — define basic operators for new class:

```c
TwoDimVec a,b,c;
c = a + b;
```

(not possible in Java)

Useful applications:

- Code becomes more readable
 - Examples: Complex numbers, 4-vectors, histograms
- Can be used for algebraic manipulations (\(\Rightarrow\) Ginac)

Note that internally the advanced concepts are still realized by function calls

Ignoring what happens internally may lead to severe performance problems
Looking under the hood

Assume a, b, c, \ldots some sort of vector with $+$ overloaded in the canonical way

How is

$$\text{tmp} = a + b + c + d + f$$

translated by the compiler?

 Might be translated as:

\begin{align*}
\text{tmp1} & = \text{add}(a, b); \\
\text{tmp2} & = \text{add}(\text{tmp1}, c) \\
\text{tmp3} & = \text{add}(\text{tmp2}, d) \\
\ldots
\end{align*}

Instead of:

\begin{verbatim}
for(i=0,\ldots)\
\{
\text{tmp}[i] = a[i] + b[i] + \ldots
\}
\end{verbatim}

Be careful when using C++ for time critical applications!
Very difficult without detailed knowledge about C++
Generic programming with templates

Example: Sorting of objects relies only on a comparison function (“is_greater(a,b)”) can be formulated for arbitrary data types, provide code as template, compiler generates the specialization

Generic formulation of algorithms

Many useful examples in the Standard Template Library (STL) have a look before developing something from scratch

Useful application:

Function templates allow easily to switch to higher accuracy using QD for example

[see also D. Bailey’s lecture]
Expressions templates and template meta programming

Basic idea: Let the compiler do the work for you, avoid draw back of some nice C++ features, i.e. overhead in operator overloading

→ very sophisticated technology, highly non-trivial

```cpp
template<int N>
class Factorial {
public:
    static const double value = N * Factorial<N-1>::value;
};
template<>
class Factorial<0> {
public:
    static const double value = 1.;
};
```

Usage: `Factorial<69>::value;`

The value is substituted at compile time, no time needed during execution!
Compose new classes from old ones via

- Composition → built new classes from old ones
- Inheritance → extend existing classes by new methods
- Polymorphism → make old code calling new code
Recommendation

- Start with C using the C++ compiler
- Start with the easy concepts
- A good object oriented design needs a lot of time
Conclusion

Being efficient is very difficult!

 Depends on

- Algorithms
- Implementation
- Tools / Hardware
- Organizing the work in an efficient way

→ No general rule, try out various methods to see what works best for you

The more you know what is available on the market the more likely you may find the right tools

I hope, I gave you some ideas how to address the problem
Exercises:

1) Go to the directory `make`
 - Run the project, understand how it works
 - Extend it by “checks”

2) Go to the directory `sed-awk`
 - Add the data in `data.dat` using `awk`
 - Create C assignments `a_i = #` from `data.dat` using `awk`
 - Translate the result `a_i =…` \rightarrow `a[i] =…` using `sed`

3) Define a function template in C++
 - Evaluate the function in single and double precision
 - Evaluate the function in double double using QD

4) Calculate Fibonacci numbers using template techniques

see /afs/ifh.de/user/p/puwer/public/capp/exercises