Jet Cross Sections and Transverse Momentum Distributions with NNLOJET

Thomas Gehrmann, Universität Zürich

RADCOR 2017, St. Gilgen, 24.9.-29.9.2017
Benchmark processes at LHC
Benchmark processes: $2 \rightarrow 2$ reactions

- **Large cross sections**
 - Multiple-differential measurements
 - Di-jet production
 - Z$+$jet, W$+$jet
 - H$+$jet

- **Detailed understanding of dynamics**
 - Disentangle production processes and jet definitions
 - Measure fundamental parameters
 - Probe parton distributions

- **Transverse momentum distributions**
 - Continuous transition from hard to soft region
 - Fixed order versus resummation
Z transverse momentum distribution

- Transverse momentum requires partonic recoil

Mismatch of orders in perturbation theory
- NNLO for inclusive Z is only NLO for p_T-distribution
- $Z+\text{jet}$ and $Z p_T$ distribution closely related

NLO fails to describe measurements in norm and shape
Ingredients to jet production at NNLO

- **Two-loop matrix elements**
 - Explicit infrared poles from loop integrals

- **One-loop matrix elements**
 - Explicit infrared poles from loop integral
 - Implicit infrared poles from real radiation

- **Tree-level matrix elements**
 - Implicit infrared poles from real radiation

- **Require method to extract singular contributions**
Recent NNLO results for LHC processes

- Calculations with full final state information
 - Can apply experimental selection cuts
 - \(pp \rightarrow V, \ pp \rightarrow H, \ pp \rightarrow VH, \ pp \rightarrow \gamma\gamma \) (C. Anastasiou, K. Melnikov, F. Petriello; S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, F. Tramontano)
 - \(pp \rightarrow V\gamma, \ pp \rightarrow Z^0Z^0, \ pp \rightarrow W^+W^- \) (F. Cascioli, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, M. Wiesemann, E. Weihs, TG)
 - \(pp \rightarrow \text{top quark pairs} \) (M. Czakon, D. Heymes, A. Mitov)
 - \(pp \rightarrow V+j \) (R. Boughezal, C. Focke, X. Liu, F. Petriello)
 - \(pp \rightarrow Z^0+j \) (A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, T. Morgan, TG)
 - \(pp \rightarrow \gamma^+ j \) (J. Campbell, K. Ellis, C. Williams)
 - \(pp \rightarrow H+2j \) (VBF) (M. Cacciari, F. Dreyer, A. Karlberg, G. Salam, G. Zanderighi)
 - \(pp \rightarrow 2j \) (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, J. Pires, TG)
Antenna subtraction

- Subtraction terms constructed from antenna functions
 - Antenna function contains all emission between two partons

- NNLO antenna subtraction (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - Four-parton antenna: two unresolved partons
 - Three-parton antenna at one loop
 - Products of NLO antenna functions
 - Soft antenna function
 - Combination with mass factorization (J. Currie, E.W.N. Glover)
NNLOJET code

- **NNLO parton level event generator**
 - Based on antenna subtraction

- **Provides infrastructure**
 - Process management
 - Phase space, histogram routines
 - Validation and testing
 - Parallel computing (MPI) support for warm-up and production
 - ApplGrid/fastNLO interfaces in development

- **Processes implemented at NNLO**
 - Z+(0, 1)jet, H+(0, 1)jet, W+0jet
 - DIS-2j, LHC-2j
 - Typical runtimes: 60’000-250’000 core-hours

NNLOJET project:
NNLOJET: phase space at NNLO

- **Numerical phase space integrator**
 - Partition final state phase space into wedges
 - Triple collinear: $s_{\text{min}1} = s_{ab}, s_{\text{min}2} = s_{ac}$
 - Double single collinear: $s_{\text{min}1} = s_{ab}, s_{\text{min}2} = s_{cd}$
 - E.g. di-jet $2 \rightarrow 4$ partons: 24 TC and 6 DC wedges
 - Multiple limits per wedge
 - Parametrize phase space
 - Angular variables for unresolved momentum directions
 - Non-linear mapping for unresolved invariants
 - Linear mapping (process-optimized) for resolved invariants
 - Ensure optimal coverage
 - Local cancellation of angular matrix element correlations
Z p_T-distribution at NNLO

- Using calculation for $Z+$jet inclusively on partons
 - No jet requirement
 - Including leptonic Z-decay
 - Lower cut on transverse momentum
 - Compute fiducial cross sections

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>leading lepton</td>
<td>$</td>
<td>\eta_1</td>
</tr>
<tr>
<td></td>
<td>$p_T^{\ell_1} > 20 \text{ GeV}$</td>
<td>$p_T^{\ell_1} > 25 \text{ GeV}$</td>
</tr>
<tr>
<td>sub-leading lepton</td>
<td>$</td>
<td>\eta_2</td>
</tr>
<tr>
<td></td>
<td>$p_T^{\ell_2} > 20 \text{ GeV}$</td>
<td>$p_T^{\ell_2, 2} > 10 \text{ GeV}$</td>
</tr>
</tbody>
</table>
Z p_T-distribution at NNLO

- **NNLO effects**
 - Around 5% corrections, modify shape of p_T distribution
 - Normalization of data not described correctly (both CMS/ATLAS)

A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, T. Morgan, TG
Z p_T-distribution at NNLO

- Compute inclusive fiducial cross section at NNLO
- Corresponds to $Z+0j$ calculation
- Observe same discrepancy

Consider normalized p_T distribution

NNLOJET

$\sqrt{s} = 8$ TeV

$p p \rightarrow Z + \geq 0 \text{ jet}$
Z p_T-distribution at NNLO

- Double differential distributions
 - $(p_T, m_\|), (p_T, y)$
 - Good agreement for normalized distributions
- Revisit ingredients
 - Luminosity
 - Parton distributions
 (R. Boughezal, A. Guffanti, F. Petriello, M. Ubiali)
Z p_T-distribution at NNLO

- Low p_T
 - measurements to 1 GeV
 - Challenge for NNLO calculation: stability
 - NNLO reliable to around 5 GeV

- Related observable (purely from lepton directions)

$$\phi^* = \tan \left(\frac{\pi - \Delta \phi}{2} \right) \sin(\theta^*_\eta) \approx \frac{p_T^Z}{2m_{ll}}$$
Z ϕ^*-distribution at NNLO

- Leptonic variable ϕ^* allows higher resolution
- Observe breakdown of fixed order similar to p_T-distribution
- Matching onto NNLL resummation ongoing
Angular coefficients in Z production

- Angular distribution of final state leptons
 - Collins-Soper frame

\[
\frac{d\sigma}{d^4q \, d \cos \theta \, d \phi} = \frac{3}{16\pi} \frac{d\sigma^{\text{unpol.}}}{d^4q} \left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 \left(1 - 3 \cos^2 \theta\right) + A_1 \sin(2\theta) \cos \phi + \frac{1}{2} A_2 \sin^2 \theta \cos(2\phi) + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin(2\phi) + A_6 \sin(2\theta) \sin \phi + A_7 \sin \theta \sin \phi \right\},
\]

- Angular coefficients $A_0..A_7$ are functions of transverse momentum
- Important input to MC tuning for the measurement of W mass
Angular coefficients in Z production

- Coefficients $A_0..A_4$ measured by fixed target, ATLAS, CMS
 - A_4 is forward-backward asymmetry: $\sin^2 \Theta_W$
 - Theory: $O(\alpha_s^0): A_4$, $O(\alpha_s^1): A_0..A_3$, $O(\alpha_s^2): A_5..A_7$
- NLO for $O(\alpha_s^1)$-coefficients: from NNLO V+0j
 - (M. Lambertsen, W. Vogelsang)
- NNLO for $O(\alpha_s^1)$ and NLO for $O(\alpha_s^2)$-coefficients: from NNLO V+1j
 - (R. Gauld, A. Gehrmann-De Ridder, N. Glover, A. Huss, TG)
 - require non-local cancellations
 - ease tension with data
Angular coefficients in Z production

- Lam-Tung relation (spin-1/2 quarks): $A_0 - A_2 = 0$
 - Broken by QCD corrections only at $\mathcal{O}(\alpha_s^2)$
- Angular coefficients A_i defined relative to $p_{T,Z}$-distribution
 - Kinematical suppression for $p_{T,Z} \to 0$ (region of large statistics)
- Define Lam-Tung violation: $\Delta^{LT} = 1 - A_2/A_0$

\[\Delta^{LT} = 1 - \frac{A_2}{A_0} \]
Higgs p_T distribution at NNLO

- Normalized results in good agreement with 8TeV data

- Prepare for precision studies at higher energy

X. Chen, J. Cruz-Martinez, E.W.N. Glover, M. Jaquier, TG
Jet cross sections at NNLO

- **NNLO corrections to di-jet production in DIS**
 - Implemented in NNLOJET (J. Currie, A. Huss, J. Niehues, TG)
 - Substantial NNLO effects
 - Uncovered infrared-sensitive interplay of H1/ZEUS event selection
 - Combination of jet-p_T and di-jet mass restricts LO/NLO phase space

![Graphs showing jet cross sections at NNLO](image)

RADCOR 2017
Jet cross sections in DIS

- Single inclusive jet
 - New H1 measurement
- NNLO considerably improves description of data
- First application of NNLOJET/AppGrid interface (with D. Britzger, C. Gwelnan, M. Sutton, K. Rabbertz)

H1 Inclusive jets

- H1 HERA-II
- H1 HERA-II

Systematic uncertainty
Jet cross sections in DIS

- **Determination from H1 jet data**
 - $\alpha_s = 0.1157(20)_{\exp}(29)_{\text{th}}$

- **Fit with PDF**
 - $\alpha_s = 0.1142(28)_{\text{total}}$

- **Potential impact on future PDF**
NNLO corrections to di-jet production

- Four QCD partons at tree level
 - Most complicated process so far
 - Larger number of unresolved limits than in V+jet
- NNLO corrections at leading color N and leading N_F
 (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, J. Pires, TG)

- Subleading corrections: below 2% of cross section at NLO
- Stabilization of predictions
 - Scale dependence
 - Lower spread between different central scales
 - Many potential applications

![NNLO corrections graph]

ATLAS 7 TeV, anti-kt jets, $R=0.4$, $0.0 < |y^*| < 0.5$
Single jet inclusive production at NNLO

- Scale setting in single jet inclusive production: choice
 - for full event: p_{T1} of hardest jet in event
 - for each jet: p_T of jet
- Scale choice: measure of theory uncertainty?

![Graphs showing scale dependence of NLO prediction and comparison with data](image-url)
NNLO corrections for jet processes

- **Precision phenomenology**
 - Want to compare with multiple data sets
 - Vary theory parameters
 - Renormalization and factorization scale
 - Parton distributions
 - Strong coupling constant

- **Running NNLO parton-level program a large number of times is not realistically feasible**

- **Possible dissemination of NNLO results**
 - K-factors, re-weighting (NNPDF, MMTW)
 - NNLO coefficient functions for each data bin (fastNLO, ApplGrid: used e.g. in HERAPDF)
 - Event n-Tuples (NLO: BlackHat)
Conclusions

- **NNLO corrections to precision observables at LHC**
 - Various methods have been applied successfully
 - Healthy competition between groups

- **Current frontier: $2 \rightarrow 2$ QCD processes**
 - Substantial number of calculations completed in the past two years
 - More results coming
 - Higher multiplicities require new methods for two-loop amplitudes

- **Precision phenomenology with jet observables starting**
 - Run-time of NNLO codes prohibitive: other methods to distribute results
 - Measurements of coupling constants
 - Determination of parton distributions