2-loop MSSM Higgs-mass QCD-EW corrections in real and complex MSSM

Sophia Borowka
CERN

Project in collaboration with Sebastian Passehr & Georg Weiglein

Radcor 2017, St. Gilgen, Austria, Sep 25th, 2017
Motivation
The Era of the Large Hadron Collider

Blessing or curse?
Discovery of a scalar particle

- Scalar particle discovered which looks like the Higgs boson of the Standard Model
 - consistent with EW precision bounds
Discovery of a scalar particle

- Scalar particle discovered which looks like the Higgs boson of the Standard Model
 - consistent with EW precision bounds
 - consistent with spin and parity predictions of Standard Model
Discovery of a scalar particle

- Scalar particle discovered which looks like the Higgs boson of the Standard Model
 - consistent with EW precision bounds
 - consistent with spin and parity predictions of Standard Model
 - couplings to fermions consistent with SM prediction

ATLAS & CMS Combination Aug ’16
Beyond the Standard Model

- MSSM exclusion bounds are discouraging
Beyond the Standard Model

- MSSM exclusion bounds are discouraging
- but other BSM models become better excluded as well
Beyond the Standard Model

- MSSM exclusion bounds are discouraging
- but other BSM models become better excluded as well

→ BSM ‘hiding’ at higher energies?
Beyond the Standard Model

- MSSM exclusion bounds are discouraging
- but other BSM models become better excluded as well

→ BSM ‘hiding’ at higher energies?

- wait for end of LHC (and HL-LHC) runs

MSSM: low-energy SUSY predictions for LHC

- supersymmetry only known extension to Poincaré algebra
- dark matter candidate
- MSSM particles are within reach of LHC energies
MSSM: low-energy SUSY predictions for LHC

- supersymmetry only known extension to Poincaré algebra
- dark matter candidate
- MSSM particles are within reach of LHC energies

→ still a prime candidate for BSM
Higgs sector of the MSSM with real parameters

- The Higgs sector of the MSSM has two scalar doublets

\[
H_1 = \left(\begin{array}{c}
v_1 + \frac{1}{\sqrt{2}}(\phi_1^0 - i\chi_1^0) \\
-\phi_1^-
\end{array}\right) \quad H_2 = e^{i\xi} \left(\begin{array}{c}
v_2 + \frac{1}{\sqrt{2}}(\phi_2^0 + i\chi_2^0)
\end{array}\right)
\]

\rightarrow 5 Higgs-bosons: h, H, A, H^{\pm}

- Potential of the Higgs sector (incl. soft SUSY breaking terms)

\[
V = m_1 |H_1|^2 + m_2 |H_2|^2 - m_{12}(\epsilon_{ab} H_1^a H_2^b + h.c.) + \frac{1}{8}(g_1^2 + g_2^2)(|H_1|^2 - |H_2|^2)^2 + \frac{1}{2}g_2^2 |H_1^\dagger H_2|^2
\]

\(g_1, g_2\): electro-weak gauge couplings,
\(v_1, v_2\): the v.e.v.’s in \(\tan\beta \equiv \frac{v_2}{v_1}\),
\(m_{12}\): soft SUSY breaking term in \(m_A^2 = m_{12}^2(\tan\beta + \cot\beta)\)
Higgs-boson mass prediction in the MSSM

- feature in the MSSM: light Higgs-boson mass can be predicted!
 \[\Rightarrow \text{higher-order corrections can be computed} \]

- accurate predictions used to
 - improve exclusions
 - constrain other BSM models
 - more accurate assessment of theoretical uncertainties
MSSM excluded at tree-level

- The tree-level neutral \mathcal{CP}-even Higgs-boson masses

\[
M_{\text{Higgs}}^{2, \text{tree}} = \begin{pmatrix}
 m_A^2 \sin^2 \beta + M_Z^2 \cos^2 \beta & -(m_A^2 + M_Z^2) \sin \beta \cos \beta \\
 -(m_A^2 + M_Z^2) \sin \beta \cos \beta & m_A^2 \cos^2 \beta + M_Z^2 \sin^2 \beta
\end{pmatrix}
\]

are limited to $m_h \leq \min(M_Z, m_A) |\cos(2\beta)|$

- Higher-order corrections shift the Higgs-boson masses considerably

These lead to maximal values for $m_{h_{\text{max}}} \approx 135$ GeV
Higgs-boson masses from self-energies

- include self-energy corrections in inverse Higgs propagator matrix

\[
\Gamma \equiv \Delta^{-1}_{\text{Higgs}} = -i \begin{pmatrix}
 p^2 - m_h^2 + \hat{\Sigma}_h(p^2) & \hat{\Sigma}_{hH}(p^2) \\
 \hat{\Sigma}_{hH}(p^2) & p^2 - m_H^2 + \hat{\Sigma}_H(p^2)
\end{pmatrix}
\]

with renormalized self-energies \(\hat{\Sigma} \)

- The neutral \(CP \)-even masses are the real parts of the poles of the propagator matrix \(\Delta_{\text{Higgs}} \)

- Strategy (in \texttt{FeynHiggs}): Find complex solutions to \(\text{Det}(\Gamma) = 0 \)
Status: Radiative corrections in the MSSM

Higher-order corrections to the Higgs-boson mass in the MSSM:

1-loop 2-loop 3-loop RGE approach

- Ellis, Ridolfi, Zwirner '91; Okada, Yamaguchi, Yanagida '91; Haber & Hempfling '91; Brignole '92; Chankowski, Pokorski, Rosiek '92 '94; Dabelstein '95; Pilaftsis '98; Demir '99; Heinemeyer '01; Pilaftsis, Wagner '99; Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '07

- Hempfling & Hoang '94; Carena et al. '95 '96; Espinosa et al. '95 '00 '01; Heinemeyer, Hollik, Weiglein et al. '98 '99 '00 '00; Zhang '99; Carena, Ellis, Pilaftsis, Wagner '00; Choi, Drees, Lee '00; Degrassi, Slavich et al. '01 '03; Ibrahim, Nath '00 '02; Brignole, Degrassi, Slavich, Zwirner '02; Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '05 '07 '13; S. P. Martin '02 '03 '04 '05 '07; SB, Hahn, Heinemeyer, Heinrich, Hollik '14; Degrassi, Di Vita, Slavich '14; Hollik, Paßehr '14; Goodsell, Staub '16; Paßehr, Weiglein '17

- S.P. Martin '07; Harlander, Kant, Mihaila, Steinhauser '08 '10; Harlander, Klappert, Voigt '17

- Binger '04; Giudice, Strumia '11; Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '13; Draper, Lee, Wagner '13 '15; Bagnaschi, Giudice, Slavich, Strumia '14; Vega, Villadoro '15; Bahl, Hollik '16; Athron, Park, Steudtner, Stöckinger, Voigt '17; Bahl, Heinemeyer, Hollik, Weiglein '17

Many more contributions...
Are we done?

Unfortunately not:
differences still in range
$1 - 2.5 \text{ GeV}$

Bahl, Heinemeyer, Hollik, Weiglein ’17

Reasons:

▶ precision of prediction depends on code and SUSY scale
▶ perturbative series converges slowly (new channels open up)
▶ renormalization scheme dependence still large at two-loop level
▶ conceptual problems: renormalization scheme ambiguities
Are we done?

Unfortunately not: differences still in range $1 - 2.5$ GeV

Bahl, Heinemeyer, Hollik, Weiglein ’17

Reasons:

▶ precision of prediction heavily depends on SUSY scale
▶ perturbative series converges slowly (new channels open up)
▶ renormalization scheme dependence still large at two-loop level
▶ conceptual problems: renormalization scheme ambiguities
Public codes with fixed-order MSSM corrections

FeynHiggs Bahl, Hahn, Heinemeyer, Hollik, Passehr, Rzehak, Weiglein '98 '02 '06 '13 '16 '17

SoftSusy Allanach, Bednyakov, Martin, Robertson, Ruiz de Austri et al. '02 '14 '16

SuSpect Djouadi, Kneur, Moultaka '02

SPheno Porod '03; Porod, Staub '11

CPsuperH Carena, Choi, Drees, Ellis, Lee, Pilaftsis, Wagner '03

H3M Kant, Harlander, Mihaila, Steinhauser '10

Summary of implemented fixed-order real/complex corrections:

1-loop complete

2-loop $\mathcal{O}(\alpha_s \alpha_t), \mathcal{O}(\alpha_t^2), \mathcal{O}(\alpha_s \alpha_b), \mathcal{O}(\alpha_t \alpha_b), \mathcal{O}(\alpha_b^2)$ at $p^2 = 0$

$\mathcal{O}(\alpha_s \alpha_t), \mathcal{O}(\alpha_s \alpha)$ at $p^2 \neq 0$

3-loop $\mathcal{O}(\alpha_s^2 \alpha_t)$ at $p^2 = 0$

NEW: $\mathcal{O}(\alpha_s \alpha_q), \mathcal{O}(\alpha_s \alpha)$ at $p^2 \neq 0$ for complex parameters and $m_b \neq 0$
The Calculation
Higgs-boson self-energy diagrams needed

\[\Phi_{i,j} = h, H, A \]
Additional diagrams for renormalization
Diagram generation and processing

- Diagrams generated with **FeynArts** Kühlbeck, Böhm, Denner '90; Hahn '01
- Trace evaluation using **TwoCalc** Weiglein et al. '93
- 1-loop tensor reduction with **FormCalc** Hahn et al. '99 '08
- 2-loop tensor reduction with **Reduze** von Manteuffel, Studerus '12

→ Choose topologies producing least artificial mass thresholds in coefficients
Treatment of loop integrals

- 1-loop and factorizable 2-loop integrals known
- different genuine 2-loop mass configurations: 177
Treatment of loop integrals

- 1-loop and factorizable 2-loop integrals known
- different genuine 2-loop mass configurations: 177
- most difficult topologies:

\[T_{234} \]
\[T_{1234} \]
\[T_{11234} \]
\[T_{12345} \]
Treatment of loop integrals

- 1-loop and factorizable 2-loop integrals known
- different genuine 2-loop mass configurations: 177
- most difficult topologies:

\[T_{234} \]

\[T_{1234} \]

\[T_{11234} \]

\[T_{12345} \]

- big advances on analytical side Adams, Bogner, Weinzierl et al. '13 '15 '16; Remiddi, Tancredi '14 '16
- dedicated numerical codes available S2L Bauberger, Böhm '95, TSIL Martin, Robertson '06
Numerical evaluation of loop integrals

- we compute integrals fully numerically
- use interface to \texttt{FeynHiggs} to link external programs

 SB, Hahn, Heinemeyer, Heinrich, Hollik '14

- numerical evaluation using \texttt{SecDec 2} SB, Carter, Heinrich '12; SB, Heinrich '13 and Cuhre in \texttt{CUBA Library} Hahn '04
Numerical evaluation of loop integrals

- we compute integrals fully numerically
- use interface to **FeynHiggs** to link external programs

 SB, Hahn, Heinemeyer, Heinrich, Hollik '14

- numerical evaluation using **SecDec 2** SB, Carter, Heinrich '12; SB, Heinrich '13 and Cuhre in **CUBA Library** Hahn '04

 - newest version: **pySecDec** SB, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17, see talk by Stephan Jahn
Numerical evaluation of loop integrals

- we compute integrals fully numerically
- use interface to FeynHiggs to link external programs
 SB, Hahn, Heinemeyer, Heinrich, Hollik ’14
- numerical evaluation using SecDec 2 SB, Carter, Heinrich ’12; SB, Heinrich ’13 and Cuhre in Cuba Library Hahn ’04
 - newest version: pySecDec SB, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke ’17, see talk by Stephan Jahn
- mass configurations evaluated at
 \[p^2 = M_{h_1}^2, M_{h_2}^2, M_{h_3}^2, M_{H^\pm}^2, M_W^2, M_Z^2 \]
 \[\rightarrow 513 \text{ integrals to compute on the fly} \]
- relative accuracies: at least \(10^{-7}\)
2-loop renormalization

- 1-loop counter term insertions
- 2-loop counter terms

- Renormalization procedure consistent with other higher-order corrections in \texttt{FEYNHIGGS} Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '06; SB, Hahn, Heinemeyer, Heinrich, Hollik '14

- Parameter renormalization in the OS scheme:
 \[\delta m_t^{(1)}, \delta m_{\tilde{t}_1}^{(1)}, \delta m_{\tilde{t}_2}^{(1)}, \delta m_{\tilde{b}_2}^{(1)}, \delta m_{H^\pm}^{2(2)}, \delta M_Z^{2(2)}, \]

- Parameters renormalized \(\overline{DR}\): \(\delta m_b^{(1)}, \delta A_b^{(1)}\)

- Field renormalization only divergent terms, \(\tan\beta\) also finite terms
 \[\delta Z_{H_1}^{(2)}, \delta Z_{H_2}^{(2)}, \delta \tan\beta^{(2)} = \frac{1}{2} (\delta Z_{H_2}^{(2)} - \delta Z_{H_1}^{(2)} + \delta \tan\beta^{\text{fin}}) \]

\(A_b\): soft SUSY breaking parameter of the sbottom sector
Results
m_h^{mod}-like benchmark scenario

- Based on scenario in Carena, Heinemeyer, Stal, Wagner, Weiglein ’13
- Parameters:

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{H^\pm}</td>
<td>1.5 TeV</td>
</tr>
<tr>
<td>μ</td>
<td>500 GeV</td>
</tr>
<tr>
<td>$</td>
<td>M_3</td>
</tr>
<tr>
<td>$</td>
<td>X_t</td>
</tr>
<tr>
<td>$m_{{\tilde{t},\tilde{b}}L} = m{\tilde{Q}_3}$</td>
<td>2.1 TeV</td>
</tr>
<tr>
<td>$m_{{\tilde{t},\tilde{b}}_R}$</td>
<td>2 TeV</td>
</tr>
<tr>
<td>$m_{{\tilde{q},\tilde{l}}_{{L,R}}}$</td>
<td>2.5 TeV</td>
</tr>
</tbody>
</table>

with $|A_b| = |A_t|$, $q \in u, d, s, c$ and $l \in e, \mu, \tau$
Variation of mass shifts with \(\tan \beta \) and \(\mu \)

- evaluation using real parameters

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(m_{H^\pm}) input</th>
<th>(m_A) input</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 GeV</td>
<td>solid: (M_{h_1}^{\text{new}}); dashed: (M_{h_1}^{\text{old}})</td>
<td></td>
</tr>
<tr>
<td>-1500 GeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- positive \(\mu \): shifts around \(830 - 850 \) MeV
- negative \(\mu \): shifts decrease with large \(\tan \beta \)
- little difference in shifts between \(m_{H^\pm} \) and \(m_A \) as input
- \(m_{H^\pm} \) input more stable renormalization scheme

Preliminary
Variation of mass shifts with $M_3 = |M_3| e^{i\phi_{M_3}}$

- evaluation using complex parameters, $\tan \beta = 50$

- shifts smallest in the MSSM with real parameters ($\phi_{M_3} = 0$)

- size of phase shifts highly dependent on $|M_3|$
Corrections in other benchmark scenarios

<table>
<thead>
<tr>
<th>scenario</th>
<th>(m_h^{\text{max}}) (GeV)</th>
<th>(m_h^{\text{mod+}}) (GeV)</th>
<th>(m_h^{\text{mod−}}) (GeV)</th>
<th>mod. light-stop (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_h^{\text{old}}) (GeV)</td>
<td>128.313</td>
<td>125.364</td>
<td>124.839</td>
<td>122.681</td>
</tr>
<tr>
<td>(M_h^{\text{old}} +) (\mathcal{O}(\alpha_s \alpha_t p^2)) (GeV)</td>
<td>128.254</td>
<td>125.234</td>
<td>123.828</td>
<td>122.644</td>
</tr>
<tr>
<td>(M_h^{\text{new}}) (GeV)</td>
<td>128.534</td>
<td>125.754</td>
<td>124.845</td>
<td>122.609</td>
</tr>
<tr>
<td>difference (GeV)</td>
<td>0.221</td>
<td>0.390</td>
<td>0.006</td>
<td>-0.072</td>
</tr>
</tbody>
</table>

- size of corrections largely dependent on stop masses and \(A_t \)
- \(m_h^{\text{mod−}} \) scenario: down-shift from \(\mathcal{O}(\alpha_s \alpha_t p^2) \) corrections approx. compensated by new corrections

Preliminary
Corrections in other benchmark scenarios II

- Increase M_{SUSY}

<table>
<thead>
<tr>
<th>scenario</th>
<th>$m_h^{\text{mod}+}$ (GeV)</th>
<th>$m_h^{\text{mod}−}$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{SUSY}</td>
<td>2 TeV</td>
<td>3 TeV</td>
</tr>
<tr>
<td>M_h^{old} (GeV)</td>
<td>129.382</td>
<td>126.921</td>
</tr>
<tr>
<td>M_h^{new} (GeV)</td>
<td>129.922</td>
<td>127.021</td>
</tr>
<tr>
<td>difference (GeV)</td>
<td>0.540</td>
<td>0.414</td>
</tr>
</tbody>
</table>

- Corrections increase with M_{SUSY}
- $O(\alpha_s \alpha_t p^2)$ corrections don’t grow as fast as $O(\alpha_s \alpha)$ corrections
Summary and Outlook

Summary

- m_h is a precision observable in the MSSM
- we have computed two-loop QCD-EW corrections to the light MSSM Higgs mass for complex parameters
- 513 two-point integrals computed numerically with high precision
- corrections can be up to 1 GeV for scenarios within reach of the LHC

Outlook

- inclusion into \textsc{FeynHiggs} and analysis of renormalization scheme dependence
- update two-loop integrator interfaced to \textsc{FeynHiggs} (S2l routine Bauberger '94)
Backup
Two-loop parameter renormalization I

\[\delta^{(2)} m_h^2 = c_{\alpha-\beta}^2 \delta^{(2)} m_A^2 + s_{\alpha+\beta}^2 \delta^{(2)} m_Z^2 + c_{\beta}^2 \delta^{(2)} t_{\beta} \]

\[(s_{2(\alpha-\beta)} m_A^2 + s_{2(\alpha+\beta)} m_Z^2) \]

\[+ \frac{e s_{\alpha-\beta}}{2 M_W s_w} \left[(1 + c_{\alpha-\beta}^2) \delta^{(2)} T_h + s_{\alpha-\beta} c_{\alpha-\beta} \delta^{(2)} T_H \right] , \]

\[\delta^{(2)} m_H^2 = s_{\alpha-\beta}^2 \delta^{(2)} m_A^2 + c_{\alpha+\beta}^2 \delta^{(2)} m_Z^2 - c_{\beta}^2 \delta^{(2)} t_{\beta} \]

\[(s_{2(\alpha-\beta)} m_A^2 + s_{2(\alpha+\beta)} m_Z^2) \]

\[- \frac{e c_{\alpha-\beta}}{2 M_W s_w} \left[(1 + s_{\alpha-\beta}^2) \delta^{(2)} T_H + c_{\alpha-\beta} s_{\alpha-\beta} \delta^{(2)} T_H \right] , \]
Two-loop parameter renormalization II

\[\delta^{(2)} m_A^2 = \delta^{(2)} m_{H^\pm}^2 - \delta^{(2)} m_W^2, \]

\[\delta^{(2)} m_{hH}^2 = \frac{1}{2} \left(s_2(\alpha - \beta) \delta^{(2)} m_A^2 - s_2(\alpha + \beta) \delta^{(2)} m_Z^2 \right) \]

\[- c_\beta^2 \delta^{(2)} t_\beta \left(c_2(\alpha - \beta) m_A^2 + c_2(\alpha + \beta) m_Z^2 \right) \]

\[+ \frac{e}{2 M_W s_w} \left[s_\alpha^{-\beta} \delta^{(2)} T_H - c_\alpha^{-\beta} \delta^{(2)} T_h \right], \]

\[\delta^{(2)} m_{hA}^2 = \frac{e}{2 M_W s_w} s_\alpha^{-\beta} \delta^{(2)} T_A, \]

\[\delta^{(2)} m_{HA}^2 = - \frac{e}{2 M_W s_w} c_\alpha^{-\beta} \delta^{(2)} T_A. \]
Evaluation of neutral \mathcal{CP}-even MSSM Higgs-boson masses in $\overline{\text{DR}}$ scheme

\[
\left[p^2 - m_{h,\text{tree}}^2 + \hat{\Sigma}_{hh}(p^2) \right] \left[p^2 - m_{H,\text{tree}}^2 + \hat{\Sigma}_{HH}(p^2) \right] - \left[\hat{\Sigma}_{hH}(p^2) \right]^2 = 0
\]

Three steps:

1. Compute $M_{h,0}$ and $M_{H,0}$ from the 1-loop + 2-loop $O(\alpha_s\alpha_t)$ self-energies

2. Compute momentum-dependent renormalized $O(\alpha_s\alpha_t)$ self-energies for $p^2 = M_{h,0}^2$ and $p^2 = M_{H,0}^2$

3. Include new self-energy contributions as constant shifts into FEYNHIGGS and find poles M_h and M_H

- corrections available since FEYNHIGGS 2.10.1

The mass shifts are $\Delta M_{\{h,H\}} = M_{\{h,H\}} - M_{\{h,0\},\{H,0\}}$
Non-vanishing $O(\varepsilon)$ terms in $p^2 \neq 0$ calculations

- Lifting the $p^2 = 0$ restriction, momentum-dependent divergent and finite parts appear in the unrenormalized self-energies.
- The non-vanishing p^2-dependent divergent terms are cancelled by the field renormalization constants $\delta Z_{H_1}^{(2)}$ and $\delta Z_{H_2}^{(2)}$.
- Whether the additional p^2-dependent finite terms are cancelled depends on the renormalization scheme choice.
- We make the choice

\[
\delta Z_{H_1}^{(2)} = \delta Z_{H_1}^{\delta m_{t}^{OS}} \bigg|_{\text{div}} = - \left[\text{Re} \Sigma_{\phi_i}'^{(2)} \right]^{\text{div}} \bigg|_{p^2=0},
\]

\[
\delta Z_{H_2}^{(2)} = \delta Z_{H_2}^{\delta m_{t}^{OS}} \bigg|_{\text{div}} = \frac{\alpha_s \alpha_t}{2\pi^2} \left(\frac{1}{\varepsilon^2} - \frac{1}{\varepsilon} \right) - \frac{1}{\varepsilon} \frac{3\alpha_t}{2\pi} \delta m_{t}^{\text{fin}} ,
\]

therefore the additional finite p^2-dependent terms in the unrenormalized self-energies do not cancel during renormalization.
Analytically: Non-vanishing $O(\varepsilon)$ terms for $p^2 \neq 0$

- For each self-energy non-vanishing $O(\varepsilon)$ terms from δm_t^{OS} remain

\[
\hat{\Sigma}^{(2)}_{\phi_1} : \\
- \sin^2 \beta [\delta_A(M_A^2) - \delta_A(0)] = \frac{3\alpha_t}{2\pi} (-\cos^2 \beta \sin^2 \beta M_A^2) \frac{\delta m_t^\varepsilon}{m_t}
\]

\[
\hat{\Sigma}^{(2)}_{\phi_1\phi_2} : \\
\sin \beta \cos \beta [\delta_A(M_A^2) - \delta_A(0)] = \frac{3\alpha_t}{2\pi} (\cos^3 \beta \sin \beta M_A^2) \frac{\delta m_t^\varepsilon}{m_t}
\]

\[
\hat{\Sigma}^{(2)}_{\phi_2} : \\
[\delta_{\Sigma_{22}}(p^2) - \delta_{\Sigma_{22}}(0)] - \cos^2 \beta [\delta_A(M_A^2) - \delta_A(0)] = \\
\frac{3\alpha_t}{2\pi} (p^2 - \cos^4 \beta M_A^2) \frac{\delta m_t^\varepsilon}{m_t}
\]

- $\delta_A(p^2)$ appears as shift in $\delta M_A^{(2)OS} = \delta M_A^{(2)FIN} + \delta_A(m_A^2)$
Numerical verification

- Additional finite parts from $\delta_A(m_A^2)$ and $\delta_{\Sigma 22}(p^2)$