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Common origin of UHECR and HE neutrinos
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Interactions of UHECR in
the sources → secondary 
neutrinos

Neutrinos: no deflection
due to magnetic fields,
(almost) no interactions 
→ point back to sources

γ
ν

Cosmic
Rays

Detection of UHECR,
gammas  and 
neutrinos on earth
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Neutrino constraints on UHECR sources

Search for coincidence between IceCube neutrinos and high-energy photon 
detections constrain UHECR sources:

● Limits on the neutrino flux from AGNs

● Lack of neutrinos from detected Gamma-Ray 
Bursts rule out the most simple GRB 
scenarios as sources of UHECR 

Aartsen et al, Astrophys. J, 
835, 45 (2017)

Abbasi et al, Nature 484: 
351-353 (2012)

Aartsen et al. 
Astrophys. J,  
843, 112 (2017) 
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Ahlers, Halzen,  
Prog.Part.Nucl.Phys. 102 (2018) 
73-88
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What are Gamma-Ray Bursts?
Prompt emission

GRB characteristics

▸ Luminosities:

1049 - 1053 ergs / s

▸ Duration:

0.1 – 100 s

▸ Progenitors:

sGRB  (0.1 – 1 s) → Merger of 2 compact 
Objects

lGRBs (10 – 100 s) → Collapse of 
massive stars

▸ Redshifts: 1-3

▸ Multiwavelength afterglow lasting up to 
months

Barat et al, 2000, ApJ 
538(1):152

Daniel Perley
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Fireball-internal shock model

Г ~ 200 - 500

θ

Source: NASA
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Fireball-internal shock model

Stochasticity of light curve due to 
stochasticity of source → explain large 

variety of observed light curves

Multi-Collision model

Source: NASA
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Spatial resolution of fireball properties and 
particle production

V
shell

 ⍺ R2 → large collision radii = low densities (particles, photon fields, magnetic fields)

    Energy dissipation within the fireball          Energy in different particle species

Distance from engine
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See Bustamante, Heinze, Murase, Winter, 
Astrophys. J., 837, 33 (2017)
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Spatial resolution of fireball properties and 
particle production
    Energy dissipation within the fireball          Energy in different particle species

Distance from engine
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V
shell

 ⍺ R2 → large collision radii = low densities (particles, photon fields, magnetic fields)
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Spatial resolution of fireball properties and 
particle production
    Energy dissipation within the fireball          Energy in different particle species

Distance from engine
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V
shell

 ⍺ R2 → large collision radii = low densities (particles, photon fields, magnetic fields)
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Spatial resolution of fireball properties and 
particle production
    Energy dissipation within the fireball          Energy in different particle species

Distance from engine
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V
shell

 ⍺ R2 → large collision radii = low densities (particles, photon fields, magnetic fields)
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Alternative collision models
Ultraefficient shock scenario

Motivation: Problems in the standard 
merging shell scenario

1. Low efficiency in converting fireball 
kinetic energy into radiation
→ bright afterglow / photospheric 
emission? (not compatible with 
observations) 

2. High variability in the light curve 
requires highly variable central source

Possible solution: alternative collision 
dynamics (ultraefficient shock scenario)
→ intrinsically solves both problems

 

Kobayashi, S. & Sari R. 2001, 
Astrophys. J., 551, 934 (KS’01)
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Analysing ultraefficient shocks with 
hydrodynamic simulations

Each collision is a hydrodynamic process

  → Set up 1D RHD simulation to analyse 
collision process with PLUTO

Results:

1. Ultraefficient shock scenario realistic for shells with comparable masses and 
high spread in Lorentz factor

2. Non-thermal energy dissipation decrease the probability for ultraeff. shocks

3. In complete fireball simulation (const mass outflow), only ~10 % of the collisions 

→ Ultraefficient shock scenario only possible under very specific conditions
Annika Rudolph | Collision dynamics in GRB internal shocks | TeVPA 2018

Kino et al, Astrophys. J. 
611: 1021-1032 (2004)

http://plutocode.ph.unito.it/
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Fireball properties in the ultraefficient shock 
scenario 

Distance from engine
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    Energy dissipation within the fireball          Energy in different particle species
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Impact on observables

For the same luminosity, light curve 
variability and duration

1) Neutrino Flux : Slightly reduced in 
ultraefficient shock scenario (model B)

2) Light curve : Few collisions with high 
energies dominate the light curve → more 
structure

Annika Rudolph | Collision dynamics in GRB internal shocks | TeVPA 2018



Page 15

Summary and conclusion

Multi-Collision model

•  Allows to identify production regions of different particle species

Ultraefficient shock scenario

• Intrinsically high efficiency and less source variability required

• Neutrino Fluxes comparable, light curves slightly different

Hydrodynamic simulations

• Validation of collision process model

• Standard merging-shell scenario is usually a good approximation

• Ultraefficient shock scenario only applicable under very specific conditions
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Impact of energy dissipation / 2-shell 
parameter space
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      No energy dissipation 50% of Eint into non-thermal 
in PLUTO particles
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Fireball evolution (constant power outflow)
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