LLRF Commissioning and First Operation of the European XFEL

with some insight on operation issues.

Julien Branlard, for the LLRF team XFEL MicroTCA.4 LLRF installation MicroTCA workshop, DESY, 6.12.2017

ASSOCIATION

INTRODUCTION:

the European XFEL

European X-ray Free Electron Laser

- 17.5 GeV light source user facility
- TESLA superconducting 1.3GHz RF cavities
- 1.4 msec pulses at 10 Hz
- e- beam 1.35 mA nom. 4.5 mA max
- 2009: construction starts
- 2017: commissioning + first user operation

You Tube https://www.youtube.com/watch?v=p3G90p4gIQA

Julien Branlard | LLRF commissioning and first operation of the European XFEL | 6.12.2017 | Page 2

INTRODUCTION:

XFEL milestones

- > 2006: Publication Technical Design Report (TDR)
- > 2009: Civil engineering starts
- > 2013: End of underground construction
- > Oct. 2013: First RF tests in the injector
- > 2014: Installation of the first experimental huts
- > Dec. 2015: First accelerated beam in the injector
- > 2015-2016: Main Linac installation (L1, L2, L3)

INTRODUCTION:

XFEL RF station

Julien Branlard | LLRF commissioning and first operation of the European XFEL | 6.12.2017 | Page 4

LLRF for XFEL: system description

- > AMC: Advanced Mezzanine Card
- > RTM: Rear Transition Module
- > 12 slots, hot swap
- Redundant power supply

LLRF for XFEL: crate occupation - FRONT

LLRF for XFEL: crate occupation - REAR

LLRF for XFEL: standard system for an RF station

- > 2x 9U 12 slot crates (Pentair)
- 4x 1kW power supply (Wiener)
- > 2x MCH 80-lane PHYS (NAT)
- > 2x CPU quad core (Concurrent)
- > 2x timer AMC module (NAT)
- > 2x timer RTM module (NAT)
- > 2x DAMC2 (DESY)
- > 2x MPS-RTM (DESY)
- > 2x TCK7 (Vadatech)
- > 1x VM (DESY)
- > 1x CLKFT (DESY)
- > 13x SIS8300 digitizers (Struck)
- > 13x DWC1300 down converter (Struck)
- > 2x uLOG (DESY/Dynamique)

50 MícroTCA.4 components / RF station

- x 26 RF stations
- + non-standard RF stations
- + test setup
- + spares

> 2000 components

COMMISSIONING:

planning

> Pre-commissioning

- Board level.
- Crate level.
- Rack level.

> Large machine \rightarrow large team

E.g. for XFEL

20 people.8 LLRF experts.Support from other institutes.

> Parallel work

RF station wise.

COMMISSIONING:

tools

Julien Branlard | LLRF commissioning and first operation of the European XFEL | 6.12.2017 | Page 10

COMMISSIONING: LLRF milestones

RF ONLY

- RF signal checks: <u>Forward</u> and <u>Reflected.</u>
- Frequency tuning.
- > RF signal checks: <u>Probe.</u>
- Coupler tuning.
- > Power-based gradient calibration.
- > Closed-loop operation.

READY FOR BEAM

- > Establish beam transport.
- > Cavity phasing.
- > Beam-based gradient calibration.

LLRF system ready for commissioning ?

Cabling issues? Signal saturation?

From parking position to resonance.

Cabling issues? Signal saturation?

Target $Q_L = 4.6e6$.

Coarse

Feedback, learning feedforward, ...

30 bunches, 0.5nC.

Using waveguide phase shifters.

Fine relative calibration. Absolute validation using energy server.

COMMISSIONING: tool example & automation

Power-based calibration

1. Dynamic range optimization

"Adjust attenuation so that available signal uses the optimal range of the digitizers."

2. Forward power calibration

"Scale forward power signals so they read actual kW, based on the power meter measurements."

3. Probe and Reflected signal calibration

"Scale reflected and probe signals so that Probe = Forward + Reflected."

COMMISSIONING:

Migration to Ubuntu 16

- Installation stretched between 2014 to 2016
- All crates installed by default with Ubuntu 12
- Migration to Ubuntu 16 in Oct/Nov 2016
- Recompilation + deployment of all servers for new OS release

updates

Kernel update planned for end of this year

> Upgrade to PCIe gen 2

- New firmware implementation (board support package)
- Deployment this winter shutdown (first the SIS8300, later TCK7)
- Benefit: factor 2 DNA transfer speed

> Tests

- Most of the time, test on real HW \rightarrow not ideal.
- Working on alternative (VirtualLab: virtual time + devices)

Deployment / update

- Set of scripts (hand config. station by station inevitably fails).
- Debian package calls configuration script. Everything specific to that station. Specific names, specific HW config, etc...

Generic approach

- Same for different servers.
- Same for different facilities.

reset after reboot

- RESET dividers to a defined state after crate reboot
- Several MicroTCA modules
 involved
- Fixed relationship between TRIG, CLK and 1.3 GHz reference
- Use the absolute phase offset from the reference channel as template for the other channels

> CPU overheating

- Reason unknown
- CPU exchange (May 2017 A13S)

> CPU overload

- A1/AH1
- 2x LLRF system in 1 crate
- Investigate a 2-CPU solution ?

Page 16

OPERATION: isolated failures (2/2)

SSDs exchange

- RAID redundancy lost, slow writing to disk
- 3 occurrences so far: (May 2017: A9, Nov. 2017: GUN, July 2017: A6S)
- FLASH: 20 occurrences in 6 years

Device needs to be reprogrammed

- MCH (x1)
- TCK7 (x1)
- FLASH: 2-3 occurrences

Lost Ethernet communication with device

- I occurrence so far: (Nov. 2017 TMCB REFM-OPT)
- FLASH: 5-6 times (PDU)

radiation related ?

is radiation an issue ?

- Regular TLD read outs
- On-line dark current beam loss monitors
- Weekly survey (MARWIN)

is radiation an issue ?

Radiation

- Online monitor
- Regular survey
- XFEL : MARWIN

MARWIN: Mobiler und Autonomer Roboter für Wartung und INspektion

machine-level overview

Machine-level overviews panels

- Summary panels
- Statistical analysis
- Overview system health

LLRF - METER

Machine-level diagnostics & predictive maintenance

Monitoring

CPU load, fan speeds, temperatures , voltages, radiation doses, ...

- Alarm server
 Loss of reference, loss of lock, over temperature
- Data correlation Improve fault detection (more signals / model-based).
- Trip logger

Down time statistics. Where to focus our effort?

OUTLOOK: what's next ?

> XFEL advanced operation

- Performance meas. & improvement (energy, stability, uptime)
 - \rightarrow study time, advanced commissioning
 - \rightarrow software / firmware upgrade

> XFEL hardware upgrade

- Improved diagnostics

 Klystron protection, (KLM-RTM)
 Beam diagnostics (HOM-RTM)
 Direct sampling (DS800)
- Hardware upgrades

CPU ?, GPU? ADCs ? Main FPGA board ?

QUESTIONS?

Thank you for your attention!

Julien Branlard | LLRF commissioning and first operation of the European XFEL | 6.12.2017 | Page 22