Impact of Beyond the Standard Model Physics in the Detection of the Cosmic Neutrino Background

Martin Arteaga1, Enrico Bertuzzo1, Yuber F. Perez-Gonzalez1,2 and R. Zukanovich Funchal1.

1Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
2ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil.

Abstract

We discuss the effect of Beyond the Standard Model charged current interactions on the detection of the Cosmic Neutrino Background by neutrino capture on tritium in a PTOLEMY-like detector. We show that the total capture rate can be substantially modified for Dirac neutrinos if scalar or tensor right-chiral currents, with strength consistent with current experimental bounds, are at play.

Cosmic Neutrino Background (CβB)

Neutrinos were maintained in equilibrium due to \(\nu_e \rightarrow \nu_x \) and \(\nu_x \rightarrow \nu_e \).

\begin{align*}
\nu_e \text{ at } t = 0 \quad \text{and} \quad \nu_x \text{ at } t = 0
\end{align*}

When do they decouple?

Direct \(\nu_e \) and \(\nu_x \) capture rates

\begin{align*}
\Gamma_{\nu_e}^{\text{Total}} & = \frac{2}{3} \left(\sigma \nu \frac{1}{10^7} \right) m_{\nu_e} m_{\nu_x} \text{ keV}^{-1}
\end{align*}

Relic neutrinos are non-relativistic today.

\begin{align*}
\text{Temperature and root-mean-square momentum per neutrino species at the present time:} & \\
\text{\(T_e \approx 0.168 \text{ meV} \)}, & \text{\(\langle p_e \rangle \approx 0.064 \text{ meV} \)}
\end{align*}

How would be the detection?

BSM Capture Rate

\begin{align*}
\sigma_{\nu_e}^{\text{BSM}}(0, p_e) & = \frac{G_F^2}{4 \pi} \left(\frac{m_{\nu_e}}{m_{\nu_x}} \right)^2 \left(1 - \frac{m_{\nu_x}^2}{2 p_e^2} \right) \langle p_e \rangle \text{ keV}^{-1}
\end{align*}

Right-handed couplings are relevant.

\begin{align*}
\mathcal{L}(\nu_e, \nu_x) & \geq 2 \frac{G_F^2}{4 \pi} \left(\frac{m_{\nu_e}}{m_{\nu_x}} \right)^2 \left(1 - \frac{m_{\nu_x}^2}{2 p_e^2} \right) \langle p_e \rangle \text{ keV}^{-1}
\end{align*}

How would be the detection?

Conclusions

- The detection of the cosmic neutrino background could shed light on the neutrino fermionic nature and the absolute values of the masses.
- We found that BSM physics can hinder the discovery of the neutrino nature, as it can modify the capture rate in a PTOLEMY-like detector.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Ciência e Tecnologia (CNPq).

References