A Liquid Scintillator Transparency Monitoring Laser System for JUNO
Wilfried W. Depnering, on behalf of the JUNO Collaboration

The JUNO Experiment & Motivation

- **Main Goals of the JUNO Experiment**
 - Determination of the neutrino mass hierarchy (sign of $[\Delta m_{21}^2]$)
 - Precision measurement of solar oscillation parameters θ_{13}, Δm_{21}^2 and atmospheric oscillation parameter Δm_{31}^2 to better than 1%
- **How to measure the Mass Hierarchy?**
 - JUNO uses interference effects of Δm_{21}^2 and Δm_{31}^2 in oscillation probabilities of ν_s emitted by nuclear reactors

General Design of the JUNO Detector

![Schematic of the Jinpingex Underground Neutrino Observatory (JUNO)](image)

Design of the Laser System & Characterization of single Components

A Unit for Researching Online the lScTransparency

The Laser Diode

We will use the light of a laser diode to illuminate the detector in order to determine the optical parameters of the scintillator.

- **Requirements:**
 - Stability
 - Linearity
 - Doping spectrum
 - Resolution

Specifications:

- **Bozitmeter Laser Technik**
 - $\lambda_{FB} = 445$ nm
 - $P_{FB} = 50$ mW

The Fiber Switch Module

The Fiber Switch module has twelve different outlets through which the laser can be guided via optical fibers into the detector. Only one outlet is open at a time.

- **Requirements:**
 - Stable intensity ratio between outlets
 - No channel-channel-communication

Specifications:

- **Performance stability ≤ 0.01 dB**

The Fiber Termination

Here, the laser couples out of the fiber being collimated by a GRIN lens. The beam direction is adjustable by a piezo-electric device – the Fiber Termination Holder (FTH).

- **Fiber Termination Holder:**
 - Beam tilt to the p- and B-direction
 - Beam is tunable even after filling

Designation:

![Designation](image)