Single Barium Tagging in Solid Xenon for the nEXO Experiment

Christopher Chambers, Tim Walton, David Fairbank, William Fairbank for the nEXO collaboration
Department of Physics, Colorado State University

Extending the Sensitivity of Neutrinoless Double Beta Decay in the nEXO Detector

$^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^-$

0νββ decay discovery would demonstrate:
- Neutrinos are Majorana Particles
- Lepton Number Violation
- Input on Neutrino Mass and Hierarchy

Apparatus
1. Cool sapphire window to 50K
2. Begin Xe gas flow
3. Pulse Ba$^{+}$ beam onto window
4. Stop Xe gas flow
5. Cool window to 10K

Deposition
- Cool sapphire window to 50K
- Xe gas flow begins
- Pulse Ba$^{+}$ beam onto window
- Xe gas flow stops
- Cool window to 10K

Observation
- Excite with dye laser at 572 nm
- Observe fluorescence at 619 nm
- Image with LN-cooled CCD
- Scan laser with piezo-electric translation stages
- Evaporate sample at 100K

Background Bleaching
- 532 nm laser rastered across sample (90μm × 90μm)
- Reduces surface background by a factor of 30

Fixed Laser Images
- Sample images:
 - Fluorescence signal is linear with # of ions deposited: not Ba$_n$ molecule!
 - Best fit of 409±10 counts/mWs/ion

Scanned Laser: successive CCD images
- Moving laser in x in 4 μm steps

Composite scan image
- (each pixel is integral of counts in 3x3 laser region of CCD image)

Summary: First detection of single atoms in solid rare gas, a major step for Ba tagging in nEXO

Key features:
- Single Ba atoms can be counted with S/σ ≈ 70.
- Ba deposit can be “erased” by evaporating and re-freezing the solid Xe coating.
- No sensitivity to any stray Ba atoms on window surface.